АЕ = ЕС, значит ΔAEC - равнобедренный.
∠ЕАС = ∠ЕСА (свойство равнобедренного треугольника), обозначим их α.
Пусть АВ = а, тогда АС = 2а.
Биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Тогда
ВЕ:ЕС = АВ:АС = 1:2
Пусть ВЕ = х, тогда ЕС = EA = 2х.
В ΔЕАС по теореме косинусов для угла ЕАС:
cosα = (AE² + AC² - EC²)/(2AE·AC)
cosα = (4x² + 4a² - 4x²)/(8ax) = a/(2x)
В ΔВАЕ по теореме косинусов для угла ВАЕ:
cosα = (AB² + AE² - BE²)/(2AB·AE)
cosα = (a² + 4x² - x²)/(4ax) = (a² + 3x²)/(4ax)
(a² + 3x²)/(4ax) = a/(2x)
a² + 3x² = 2a²
a² = 3x²
a = x√3
cosα = a/(2x) = x√3/(2x) = √3/2 ⇒ α = 30°
∠ВСА = 30°
∠ВАС = 2∠ВСА = 60°
∠АВС = 180° - ∠ВСА - ∠ВАС = 90°
ответ: 30°, 60°, 90°.
Поделитесь своими знаниями, ответьте на вопрос:
В ∆ АВС угол А равен 27°, а угол В - 63°. Выберите верные утверждения * 1) данный треугольник остроугольный 2) в данном треугольнике АВ наибольшая сторона 3) внешний угол при вершине А равен 63° 4) внешний угол при вершине В равен 117°
1 утверждение и 3 правильные
2 и 4 неверные утверждения