На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.
ответ:h₂ = 16/3 см или h₂ = 3 см.
Объяснение:
Дано:
Параллелограмм ABCD
AB = CD = 9 см
BC = AD = 12 см
h₁ = 4 см - высота, соответствующая одной стороне
Найти: вторую высоту h₂, соответствующей второй стороне.
Решение.
Воспользуемся формулой площади параллелограмма: S = a·h, то есть площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.
Возможны 2-случая.
1-случай (см. рисунок-1): S = AD·h₁ = 12·4 (см²) = 48 (см²).
Для нахождения вторую высоту h₂, соответствующей второй стороне опять воспользуемся формулой площади параллелограмма:
S = CD·h₂ = 48 (см²)
Отсюда:
9 см · h₂ = 48 (см²)
h₂ = 48 : 9 см = 16/3 см = 5 1/3 см.
ответ: h₂ = 16/3 см = 5 1/3 см.
2-случай (см. рисунок-2): S = CD·h₁ = 9·4 (см²) = 36 (см²).
Для нахождения вторую высоту h₂, соответствующей второй стороне опять воспользуемся формулой площади параллелограмма:
S = AD·h₂ = 36 (см²)
Отсюда:
12 см · h₂ = 36 (см²)
h₂ = 36 : 12 см = 3 см
ответ: h₂ = 3 см.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
По данным рисунка найти площадь параллелограмма. С обьяснением и полный ответ
Следует:
А будет 10 , так , как 6+4=10
второй катет равен 4, из правила треугольника , так как, это высота H равно 4, а угол 90, следует , что остальные два угла 30 и 30, значит два катета равны и они по 4см
и по формуле ищем площадь
10*4=40