westgti77105
?>

2 ВАРИАНТ1. В треугольнике ABC <A = 100°, <С=40°, а) Докажите, что треугольник ABC — равнобедренный, и укажите боковыестороны.б) Отрезок СК — биссектриса Данного треугольника. Найдите углы, которые онаобразует со стороной АВ.2. Отрезки AB и CD пересекаются в точке 0, которая является серединой каждого изниха) Докажите, что ∆AOD - ∆ВОС, б) Найдите <0BC, если <0DA = 40°, 2<BOС= 95°3. В прямоугольном треугольнике ABC (угол В- прямой) катет АВ равен 32см, AC - 64см. Найдите угод С.​ От

Геометрия

Ответы

krikriska84
1.
т.к. вектор_m _|_ вектор_n ---> соs(вектор_m_и_вектор_n) = 0
mx*nx + my*ny = 0 (знаменатель не может быть=0)
(ax + 2bx)(5ax -4bx) + (ay + 2by)(5ay - 4by) = 0
5(ax)² + 6ax*bx - 8(bx)² + 5(ay)² + 6ay*by - 8(by)² = 0
5((ax)²+(ay)²) + 6(ax*bx+ay*by) - 8((bx)²+(by)²) = 0
5 + 6(ax*bx+ay*by) - 8 = 0
6(ax*bx+ay*by) = 3
ax*bx+ay*by =1/2
соs(вектор_a_и_вектор_b) = ax*bx + ay*by = 1/2
угол между векторами = 60° (знаменатель для косинуса =1))
использовано: скалярный квадрат вектора=квадрату его длины)))
(ax)²+(ay)² = |a|² = 1
(bx)²+(by)² = |b|² = 1
2.
т.к. вектор_e1 _|_ вектор_e2 ---> соs(вектор_e1_и_вектор_e2) = 0
e1x*e2x + e1y*e2y = 0 (знаменатель не может быть=0)
найдем |AB| = √(AB²x + AB²y) =
= √((4e1x + 4e2x)² + (4e1y + 4e2y)²) =
= √(16((e1x)² + 2e1x*e2x + (e2x)² + (e1y)² + 2e1y*e2y + (e2y)²)) =
= 4√(1+1+2*0) = 4√2
|AC| = √(AC²x + AC²y) = √((2e1x + 6e2x)² + (2e1y + 6e2y)²) =
= √(4((e1x)² + 6e1x*e2x + (3e2x)² + (e1y)² + 6e1y*e2y + (3e2y)²)) =
= 2√(1+9+6*0) = 2√10
соs(векторAB_и_векторAC) =
= ((4e1x+4e2x)(2e1x+6e2x) + (4e1y+4e2y)(2e1y+6e2y)) / (8√20) =
= (8(e1x)²+32e1x*e2x+24(e2x)²+8(e1y)²+32e1y*e2y+24(e2y)²) / (16√5)
= (8+24+0) / (16√5) = 2 / √5
BC = √(16*2 + 4*10 - 2*8√20*2 / √5) = √(72-64) = √8 = 2√2
AC² = 40 = AB² + BC² = 32+8
т.е. треугольник АВС прямоугольный, но не равнобедренный...
ответ похоже не отсюда))) или неточность в задании векторов)))
чтобы получился угол 45° векторАС должен быть коллинеарен е2

(везде над буквами стоят векторы) 1.даны векторы m=a+2b и n=5a-4b m⊥n. | a| =| b| =1. найти угол меж
dg9792794674


Трикутник АВС, кут С=90, АВ=13, ВС=12, АС=5, АМ=МВ=АВ/2=13/2=6,5, проводимо перпендикуляр МН на АС, МН паралельна ВС, і згідно теореми Фалеса відсікає на АС рівні відрізки, АН=НС, МН-середня лінія=1/2ВС=12/2=6

2.трапеція АВСД, МН-середня лінія=9, ВС/АД=0,8, ВС=0,8АД, (ВС+АД)/2=МН, (0,8АД+АД)/2=9, 1,8АД=18, АД=10, ВС=0,8*10=8

3.Трапеція АВСД, АВ=СД=10, у трапецію можливо вписати коло за умови - сума бічних сторін=сумі основ, АВ+СД=ВС+АД, 10+10=ВС+АД, МН- середня лінія=(ВС+АД)2=20/2=10

4.трикутник АВС, АВ=ВС=АС, МН-середня лінія=1/2АС, АС=2*МН=2*6=12, периметр=12+12+12=36

5. Біля чотирикутника можливо описати коло за умови-сума протилежних кутів=180, кутА+кутС=3х+1х=4х=180, х=45, кутА=3*45=135, кутС=1*45=45, кутД=180-кутВ=180-100=80

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

2 ВАРИАНТ1. В треугольнике ABC <A = 100°, <С=40°, а) Докажите, что треугольник ABC — равнобедренный, и укажите боковыестороны.б) Отрезок СК — биссектриса Данного треугольника. Найдите углы, которые онаобразует со стороной АВ.2. Отрезки AB и CD пересекаются в точке 0, которая является серединой каждого изниха) Докажите, что ∆AOD - ∆ВОС, б) Найдите <0BC, если <0DA = 40°, 2<BOС= 95°3. В прямоугольном треугольнике ABC (угол В- прямой) катет АВ равен 32см, AC - 64см. Найдите угод С.​ От
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

lyubavalev8
Акимцева27
Kamil
Rakitin
Олеся
baxirchik
mnogomams47
Mexx9050
Tselyaritskaya Yurevich
serkan777
Vkois56
shakovaea
ashybasaida-33
gutauta6
pucha5261