спец Михасов
?>

Дано: ABCD — параллелограмм, BC= 10 см, BA= 11 см, ∡ B равен 30°. Найти: площадь треугольника S(ABC) и площадь параллелограмма S(ABCD

Геометрия

Ответы

milenaochirova01017424
1) Для начала построим данное сечение:
Для построения сечения требуется построить точки пересечения секущей плоскости с рёбрами и соединить их отрезками:
а) Можно соединять только две точки, лежащие в плоскости одной грани.
Точки В и С лежат в одной плоскости,
значит, соединяем эти точки и получаем отрезок ВС, но ВС уже построен в ходе построения прямой призмы.
Точки В и К лежат в одной плоскости → получаем отрезок ВК
б) Секущая плоскость пересекает параллельные грани по параллельным отрезкам.
Грани ВВ1С1С и АА1D1D параллельны
В противном случае эти грани пересекались бы, что противоречит условию: ВС || AD , B1C1 || A1D1 ( по свойству трапеции АВСD и A1B1C1D1 )
Через точку К проводим прямую, паралельную прямой ВС → получаем точку L.
Но также ВС || KL, BC || AD → AD || KL || A1D1 ( AD = KL = A1D1 = 4 см ) и АК = КА1. Значит, DL = LD1 ( AK = KA1 = DL = LD1 )
Точки C и L лежат в одной плоскости → получаем отрезок CL

Из этого следует, что четырёхугольник BCLK – данное по условию сечение.

АВСD – равнобедренная трапеция → АВ = CD
Боковые рёбра прямой призмы равны: АА1 = ВВ1 = СС1 = DD1
Значит, прямоугольники АВВ1А1 и CDD1C1 равны. Соответственно равны и отрезки ВК и CL.
Следовательно, сечение BCLK – равнобедренная трапеция ( ВС || КL, BK = CL )

2) В трапеции АВСD опустим высоту АМ на ВС. По свойству прямой призмы КА перпендикулярен плоскости АВС, в которой лежит проекция АМ наклонной КМ. Значит, по теореме о трёх перпендикулярах КМ перпендикулярен ВС.
Из этого следует, что угол АМК – линейный угол двугранного угла АВСК, то есть угол АМК = 60°.

3) Площадь трапеции BCLK равна:
S bclk = 1/2 × ( KL + BC ) × KM
48 = 1/2 × ( 4 + 8 ) × КМ
48 = 6 × КМ
КМ = 8 см

Рассмотрим ∆ АМК (угол КАМ = 90°):
cos AMK = AM/KM
AM= KM × cos AMK = 8 × cos60° = 8 × 1/2 = 4 см
По теореме Пифагора:
КМ² = АМ² + АК²
АК² = 8² – 4² = 64 – 16 = 48
АК = 4√3 см
АА1 = 2 × AK = 2 × 4√3 = 8√3 см

Обьём прямой призмы рассчитывается по формуле:
V ( призмы ) = S осн. × h

V ( призмы ) = S abcd × AA1 = 1/2 × ( AD + BC ) × AM × AA1 = 1/2 × 12 × 4 × 8√3 = 192√3 см²

ОТВЕТ: V ( призмы ) = 192√3 см²
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол
Tsibrova
1) Для начала построим данное сечение:
Для построения сечения требуется построить точки пересечения секущей плоскости с рёбрами и соединить их отрезками:
а) Можно соединять только две точки, лежащие в плоскости одной грани.
Точки В и С лежат в одной плоскости,
значит, соединяем эти точки и получаем отрезок ВС, но ВС уже построен в ходе построения прямой призмы.
Точки В и К лежат в одной плоскости → получаем отрезок ВК
б) Секущая плоскость пересекает параллельные грани по параллельным отрезкам.
Грани ВВ1С1С и АА1D1D параллельны
В противном случае эти грани пересекались бы, что противоречит условию: ВС || AD , B1C1 || A1D1 ( по свойству трапеции АВСD и A1B1C1D1 )
Через точку К проводим прямую, паралельную прямой ВС → получаем точку L.
Но также ВС || KL, BC || AD → AD || KL || A1D1 ( AD = KL = A1D1 = 4 см ) и АК = КА1. Значит, DL = LD1 ( AK = KA1 = DL = LD1 )
Точки C и L лежат в одной плоскости → получаем отрезок CL

Из этого следует, что четырёхугольник BCLK – данное по условию сечение.

АВСD – равнобедренная трапеция → АВ = CD
Боковые рёбра прямой призмы равны: АА1 = ВВ1 = СС1 = DD1
Значит, прямоугольники АВВ1А1 и CDD1C1 равны. Соответственно равны и отрезки ВК и CL.
Следовательно, сечение BCLK – равнобедренная трапеция ( ВС || КL, BK = CL )

2) В трапеции АВСD опустим высоту АМ на ВС. По свойству прямой призмы КА перпендикулярен плоскости АВС, в которой лежит проекция АМ наклонной КМ. Значит, по теореме о трёх перпендикулярах КМ перпендикулярен ВС.
Из этого следует, что угол АМК – линейный угол двугранного угла АВСК, то есть угол АМК = 60°.

3) Площадь трапеции BCLK равна:
S bclk = 1/2 × ( KL + BC ) × KM
48 = 1/2 × ( 4 + 8 ) × КМ
48 = 6 × КМ
КМ = 8 см

Рассмотрим ∆ АМК (угол КАМ = 90°):
cos AMK = AM/KM
AM= KM × cos AMK = 8 × cos60° = 8 × 1/2 = 4 см
По теореме Пифагора:
КМ² = АМ² + АК²
АК² = 8² – 4² = 64 – 16 = 48
АК = 4√3 см
АА1 = 2 × AK = 2 × 4√3 = 8√3 см

Обьём прямой призмы рассчитывается по формуле:
V ( призмы ) = S осн. × h

V ( призмы ) = S abcd × AA1 = 1/2 × ( AD + BC ) × AM × AA1 = 1/2 × 12 × 4 × 8√3 = 192√3 см²

ОТВЕТ: V ( призмы ) = 192√3 см²
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дано: ABCD — параллелограмм, BC= 10 см, BA= 11 см, ∡ B равен 30°. Найти: площадь треугольника S(ABC) и площадь параллелограмма S(ABCD
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

nord248
siren89
mdsazonovatv1173
petria742
mupmalino2653
nopel91668
kulibabad566
sales5947
Strelkov-Roman1263
Маргарита794
anytkaakk
dima-a
gubernatorov00
skorpion7228528
olgabylova6223