marysya60
?>

Напишите уравнение окружности с центром в точке А(-1:2) проходящей через точку В(-1:-5)​

Геометрия

Ответы

ganzashop

РЕШЕНИЕ

сделаем построение по условию

AB = BC , так как ABCD -квадрат

Точка M делит сторону BC в отношении 1:2 -можно считать , 

что сторона ВС состоит из 3-х равных частей.

Точка E делит сторону AB в отношении 1:3 - можно считать , 

что сторона АВ состоит из 4-х равных частей.

Прямая CE пересекает стороны AM и MD треугольника AMD в точках К и L соответственно.

Дополнительное построение : 

обозначим точку М1 - середина отрезка MC , тогда BM=MM1=M1C

проведем через точки М, М1 прямые m, m1 параллельные прямой CE 

по теореме Фалеса :

параллельные прямые m,m1,CE отсекают на сторонах угла <EBC

пропорциональные отрезки

на стороне ВС : BM=MM1=M1C , значит на стороне BE тоже три равные части 

обозначим для так как сторона АВ состоит из 4-х равных частей, то любая часть может быть 

представлена в виде 3х , тогда BE=3x, тогда ЕА=9х, тогда отношение 1 : 3 = 3х : 9х = 3 : 9

рассмотрим угол <BAM

снова теорема Фалеса, снова параллельные прямые m,m1,CE , снова 

пропорциональные отрезки на сторонах угла

MK : KA = 2x : 9x = 2 : 9 <это сторона АМ треугольника AMD

Дополнительное построение : 

проведем прямую DM до пересечения с прямой АВ - точка Р

проведем прямую DN параллельную прямой CE 

прямая DN отсекает на прямой АВ отрезок AN 

CE || DN , EN || CD

NECD - параллелограмм , так как противоположные стороны попарно параллельны

следовательно BE=AN , тогда BE : EN = 1 : 4

т. е. отрезок BN состоит из 5-и равных частей.

тогда BE=3x, тогда ЕN=12х, тогда отношение 1 : 4 = 3х : 12х = 3 : 12

рассмотрим угол <NPD

снова теорема Фалеса, снова параллельные прямые m,m1,CE,DN , снова 

пропорциональные отрезки на сторонах угла

ML : LD = 2x : 12x = 2 : 12 = 1 : 6 <это сторона МD треугольника AMD

ОТВЕТ

для стороны АМ отношение 2 : 9

для стороны МD отношение 1 : 6

Подробнее - на -

Объяснение:

ooomedray4

ВОТ

Объяснение:

Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°.  Следовательно:

<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Напишите уравнение окружности с центром в точке А(-1:2) проходящей через точку В(-1:-5)​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Maria095096
sargisyan
ooofishai4064
vallihhh
marvindkc
julia3594265843
dpolkovnikov
annanas08
Olesyamilenina8
kononova_Pavel689
retropluse832
ЕкатеринаРустам
Маргарита1091
Konstantinovna1936
triumfmodern