сделаем построение по условию
точка G - середина отрезка CD
точки B1, D1,G образуют плоскость GB1D1
дополнительные построения
прямая (BD) параллельна (B1D1)
прямая (CF) параллельна (BD)
прямая (GK) параллельна (BD)
прямая (CB) -секущая для параллельных прямых (BD) ,(GK), (CF)
по теореме Фалеса, прямая (CB) отсекает пропорциональные отрезки DG=GC и CE=EB
по теореме Пифагора
GE^2 = GC^2+CE^2=(D1C1/2)^2+(B1C1/2)^2 =( (D1C1)^2+(B1C1)^2 )/4 = (B1D1)^2 / 4
GE = B1D1/2 - отрезки GE и B1D1 НЕ РАВНЫ
прямая (GK) параллельна (BD) , а значит и (B1D1) и проходит через точку G в плоскости GB1D1
следовательно прямая (GK) принадлежит плоскости GB1D1
точка E - пересечение (GK) и (CB)
точки Е и B1, а значит и отрезок EB1 принадлежат плоскости GB1D1
искомое сечение - четырехугольник GD1B1E ,
противоположные стороны B1D1 и EG параллельны и не равны.
Основной признак ТРАПЕЦИИ:
четырёхугольник является трапецией, если его параллельные стороны не равны.
ДОКАЗАНО
Поделитесь своими знаниями, ответьте на вопрос:
У рівнобічній трапеції МKPN МК=РК=4см, КР=6см, МН=10 см. Знайти гострий кут трапеції.
Точки A-F-C лежат на прямой Симсона точки B относительно треугольника EGD.
Объяснение:
Основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на прямой Симсона.
Точка B лежит на описанной окружности треугольника EGD (прямые углы EBG и EDG опираются на диаметр EG).
A и С - основания перпендикуляров из точки B на стороны треугольника EGD.
Тогда AC - прямая Симсона точки B относительно треугольника EGD.
(Прямая Симсона пересекает сторону EG в точке F, следовательно BF⊥EG)