Точка О - середина боковой стороны AB трапеции ABCD. Известно, что угол OCB равен 30°, а угол OCD прямой. Найдите длину основания AD, если BC = 2, CD = 7
Менее наукообразно во вложении. Три точки из четырех всегда будут принадлежать одной плоскости, так как через три точки можно провести плоскость. Значит речь идет о том, что четвертая точка в любом случае не принадлежит этой же плоскости и не может оказаться на одной прямой с любыми двумя точками этой плоскости.. Возможны два случая. .
1. случай. Три точки лежат в одной плоскости. Пусть три точки лежат на одной прямой. Но тогда через эти три точки, принадлежащие одной прямой и четвертую точку не лежащую на этой прямой можно провести плоскость. А это противоречит условию задачи. 2 случай. Если три точки лежат на одной плоскости, но не прямой, то через любые три из них можно провести плоскость но нельзя провести прямую. Если три точки этой плоскости окажутся на одной прямой, то мы придем к первому случаю (уже доказана невозможность) Четвертая точка не лежит в этой плоскости, поэтому любая прямая, проходящая через эту четвертую точку и любую точку на плоскости пересекает эту плоскость, поэтому не может проходить через другие точки .
АлександрАлександровна
16.08.2020
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Доказательство: Пусть дан прямоугольный треугольник с катетами а и b и гипотенузой с. Составим из четырех таких треугольников квадрат со стороной а + b как на рисунке. Внутри получим квадрат со стороной с. Площадь большого квадрата равна сумме площадей составляющих его фигур: S = 4·SΔ + c² = 4 · ab/2 + c² или S = (a + b)² Приравняем правые части: 2ab + c² = (a + b)² 2ab + c² = a² + b² + 2ab c² = a² + b² Что и требовалось доказать.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Точка О - середина боковой стороны AB трапеции ABCD. Известно, что угол OCB равен 30°, а угол OCD прямой. Найдите длину основания AD, если BC = 2, CD = 7
Три точки из четырех всегда будут принадлежать одной плоскости, так как через три точки можно провести плоскость. Значит речь идет о том, что четвертая точка в любом случае не принадлежит этой же плоскости и не может оказаться на одной прямой с любыми двумя точками этой плоскости.. Возможны два случая. .
1. случай. Три точки лежат в одной плоскости. Пусть три точки лежат на одной прямой. Но тогда через эти три точки, принадлежащие одной прямой и четвертую точку не лежащую на этой прямой можно провести плоскость. А это противоречит условию задачи.
2 случай. Если три точки лежат на одной плоскости, но не прямой, то через любые три из них можно провести плоскость но нельзя провести прямую. Если три точки этой плоскости окажутся на одной прямой, то мы придем к первому случаю (уже доказана невозможность) Четвертая точка не лежит в этой плоскости, поэтому любая прямая, проходящая через эту четвертую точку и любую точку на плоскости пересекает эту плоскость, поэтому не может проходить через другие точки .