Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25
Поделитесь своими знаниями, ответьте на вопрос:
№1. В прямокутному трикутнику АВС (∠С=90º) катет АС = 18 см, ∠А = 60º. Знайдіть гіпотенузу АВ. № 2. В рівнобедреному трикутнику АВС з вершини В проведено перпендикуляр ВК на основу АС. Знайдіть довжину АК, якщо бічна сторона дорівнює 20 см, а периметр АВС дорівнює 70 см.
1.
Половина диагонали по т. Пифагора
d² = 3²+4² = 5²
d = 5 - половина диагонали.
Ребро - с= 13, катет - d - 5
h² = 13² - 5² = 169 - 25 = 144 = 12²
h = 12 - высота - ОТВЕТ
2.
ДАНО
S = d1*d2/2 = 15 - площадь основания.
Диагонали - d1, d2, h - высота.
Площади сечений
1) d1 *h = 20
2) d2 * h= 24
3) d1 * d2 = 2* S = 30
Умножаем 1) и 2)
4) d1*d2*h² = 20*24 = 480 = 30*h²
5) h² = 480:30 = 16, h = √16 = 4
Из 1) и 2)
6) d1 = 20:4 = 5 - малая диагональ ОТВЕТ
7) d2 = 24:4 = 6 - большая диагональ -ОТВЕТ
3.
Рисунок -в приложении.
a = h : sin 30 = 8 : 0.5 = 16 - ребро - ОТВЕТ