ognevasv555
?>

Четырехугольник ABCD задан координатами своих вершин A (-1; 1), B (3; 3), C (2; -2), D (-2; -1 Найдите косинус острого угла между его диагоналями.

Геометрия

Ответы

Konstantinovna1936

Решение задания приложено


Четырехугольник ABCD задан координатами своих вершин A (-1; 1), B (3; 3), C (2; -2), D (-2; -1). Най
tboychenko
Я не знаю как вставить сюда рисунок, ну и ладно, тогда вникай. Походу, что эти биссектрисы пересекаются.
В прямоугольнике все углы равны 90°, а противоположные стороны равны ⇒АВ=СД=6, ВС=АД=11
Биссектрисы ВХ и CY делят угол на равные углы 45°
Рассмотрим ΔХАВ и ΔYCД:
∠АВХ=∠ДCY = 45° (по док. выше)
АВ=АХ(Потому что ∠AXB(1)=∠DYC(2) = 45° (по св парал. прямых; ∠1 и ∠ 2-накрестлеж., потому что лежат  на парал. прямых при сек. ВX), а значит, что это треугольник равнобедренный)⇒ВА=СД
АХ=ДY (я здесь много что написал, но я надеюсь, что ты разбирешься и сам напишешь пограмотнее)
Из этого всего мы доказали, что  ΔХАВ и ΔYCД равны (по двум сторонам и углу между ними)
Из этого доказательства мы выяснили, что АХ=ДY = 6
Но вся сторона АД = 11, получается, что две биссектрисы пересекаются  и расстояние между XY 1 см(или в чем там измеряется)

Я здесь что-то много написал, но ты разберись и сам напиши попонятнее 
Но я старалась )
tiv67

В основании пирамиды лежит правильный треугольник ABC со стороной равной 6см.

S(осн.)=S_{ABC}=\dfrac{AB^2\sqrt3}{4} =\dfrac{36\sqrt3}{4} =9√3 см².

Высота правильной пирамиды падает в центр основания. Поэтому если DH высота пирамиды, а DM - апофема, то MH - радиус вписанной окружности в правильный треугольник. Т.к. по теореме о 3ёх перпендикулярах HM⊥AC.

HM=\dfrac{AB\sqrt3}{6} =\dfrac{6\sqrt3}{6} =√3 см

В прямоугольном ΔDHM (∠H=90°) найдём гипотенузу DM по теореме Пифагора.

DM=\sqrt{12^2+\sqrt3 ^2} =\sqrt{144+3} =√147 см

Боковые грани правильной пирамиды это равные треугольники.

S(бок.)=3\cdot S_{ADC} =3\cdot DM\cdot AC\cdot \dfrac12 =\dfrac32 \cdot 6\cdot \sqrt{147} =9√147 см²

S(полн.) = S(осн.)+S(бок.) = 9√3 + 9√147 см²

ответ: 9√3 + 9√147 см².


Вправильной треугольной пирамиде сторона основания равна 6 см, а высота пирамиды равна 12см. вычисли

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Четырехугольник ABCD задан координатами своих вершин A (-1; 1), B (3; 3), C (2; -2), D (-2; -1 Найдите косинус острого угла между его диагоналями.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Fedorovich309
мария Кузив1393
xarfagr
gurman171
Yevgenevich_Chipura-Nikolaeva
Kaccak8778
monenko
Tyukalova
Наталья_Васищев
gameover98
makarov021106
natachi
samiramoskva
mshelen732
ALLA1868