Я в другом месте Вам выложил векторное решение, а тут - простое и элементарное:)
При повороте на 90 градусов вокруг общей для двух квадратов вершины В стороны квадратов переходят "в себя" - точнее, сторона ВС переходит в ВР, а сторона МВ - в АВ. Или, что то же самое - точка С переходит в Р, а точка М - в А.
Удивительным образом отсюда сразу следует ответ :)
В самом деле, получается, что в четырехугольнике АМРС про повороте на 90 градусов диагональ МС переходит в диагональ АР. То есть они равны и перпендикулярны :)
А стороны искомой фигуры соединяют середины соседних сторон четырехугольника АМРС, поэтому равны половинам диагоналей и параллельны им (например, О1К - средняя линяя в треугольнике АМС, поэтому она параллельна МС и равна её половине, и так все 4 стороны четырехугольника О1LO2K).
Поэтому четырехугольник О1LO2K - квадрат :)
У Прасолова в его сложнейшем задачнике эта задача помечена * (особой сложности :)) У него приведено векторное решение, похожее на которое (более понятное) я выложил тут в другом месте. Но это решение, по-моему, снимает все вопросы.
Поделитесь своими знаниями, ответьте на вопрос:
Добрый день! Радиус основания цилиндра 10см, площадь осевого сечения 60см2. Определить площадь полной поверхности цилиндра.
Чтобы доказать,что данная фигура является квадратом,нужно,чтобы стороны были попарно параллельны и длина каждой стороны должна быть одинаковой. P.S. С данными точками четырехугольник не является квадратом. Ты скорее всего потерял(а) в точке C знак минус, то есть C(0,-8).
Для начала найдём векторы сторон,из которых состоит наш четырехугольник:(так как на сайте нет стрелочек над векторами,буду писать слово вектор или сочетание вершин например АВ)
Вектор AB = {-8-(-2);-2-6}={-6;-8}
Вектор BC = {0-8;-8-(-2)}={8;-6}
Вектор CD = {6-0;0-(-8)}={6;8}
Вектор DA = {(-2)-6;6-0)}={-8;6}
Чтобы проверить параллельны ли вектора,они должны быть коллинеарными,то есть отношения их координат должны быть равны одинаковому значению (назовем его k):
AB||CD? -
.Следовательно AB||CD.
BC||DA? -
. Следовательно BC||DA.
Теперь посчитаем длины векторов(Достаточно будет посчитать длины 2-х векторов,так как векторы коллинеарны):
|AB|=
= |CD|
|BC|=
= |DA|
Так как |AB|=10 и |BC|=10, то все четыре стороны равны. Следовательно,учитывая коллинеарность векторов и одинаковые длины, данный четырехугольник является квадратом.