alf206
?>

решить: 1. В остроугольном треугольнике АВС серединные перпендикуляры сторон АВ и ВС пересекаются в точке О, ОВ=10 см. Найдите расстояние от точки О до стороны АС, если угол ОАС равен 30°. 2. В треугольнике МНК биссектрисы пересекаются в точке О. Расстояние от точке О до стороны МН=6см, НК= 10 см. Найдите площадь треугольника НОК. 3. В треугольнике АВС медианы АА1, ВВ1 пересекаются в точке О и взаимно перпендикулярны. Найдите площадь треугольника АОВ, если АА1=18 см, ВВ1=24см.

Геометрия

Ответы

oalexandrova75

Площадь равнобедренной трапеции равна полусумме оснований, умноженной на высоту.

Высота у нас уже есть Одно из оснований - тоже. Теперь надо найти большее основание. Если опустить высоту с меньшего основания на большее, то получим прямоугольный треугольник, где гипотенузой будет боковая сторона, одним из катетов - высота трапеции, а вторым катетом - часть основания трапеции. Чтобы узнать большее основание трапеции, нам нужно вычислить этот неизвестный катет в треугольнике, потому что длиной большего основания будет сумма двух таких катетов с меньшим основанием. Так как точно такой же треугольник можно получить, опустив высоту из другой точки меньшего основания трапеции. По теореме Пифагора вычисляем неизвестный катет \sqrt{10^2-8^2}=\sqrt{100-64}=\sqrt{36}=6. Значит длина наибольшего катета равна 7+6+6=19 см. S_{trapecii}=\frac{19+7}{2}*8=(19+7)*4=26*4=104.

AMR89154331531

7 см

Правильное условие:

В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC и AC пересекаются в точке M. Известно, что MC = 14 см, ∠AВМ = 30°. Найдите расстояние от точки M до стороны AB. ответ дайте в сантиметрах.

Объяснение:

Серединные перпендикуляры к сторонам треугольника  пересекаются в одной точке — центре описанной окружности.

Значит МА=МВ=МС=R = 14 см.

Тогда ΔАМВ - равнобедренный с основанием АВ  и ∠МАВ=∠МВА=30°.

Расстоянием от т.М до стороны АВ есть высота равнобедренного  ΔАМВ.

Построим высоту МК. Получили прямоугольный ΔВМК с прямым ∠МКВ и гипотенузой МВ.

Катет МК = sin∠MВK * MВ.

Т.к. ∠МВК = ∠АВМ = 30°   и МА = 14 см, то

МК = sin 30° * 14 = 7 (см)


Выберите правильный ответ. В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

решить: 1. В остроугольном треугольнике АВС серединные перпендикуляры сторон АВ и ВС пересекаются в точке О, ОВ=10 см. Найдите расстояние от точки О до стороны АС, если угол ОАС равен 30°. 2. В треугольнике МНК биссектрисы пересекаются в точке О. Расстояние от точке О до стороны МН=6см, НК= 10 см. Найдите площадь треугольника НОК. 3. В треугольнике АВС медианы АА1, ВВ1 пересекаются в точке О и взаимно перпендикулярны. Найдите площадь треугольника АОВ, если АА1=18 см, ВВ1=24см.
Ваше имя (никнейм)*
Email*
Комментарий*