7 см
Правильное условие:
В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC и AC пересекаются в точке M. Известно, что MC = 14 см, ∠AВМ = 30°. Найдите расстояние от точки M до стороны AB. ответ дайте в сантиметрах.
Объяснение:
Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке — центре описанной окружности.
Значит МА=МВ=МС=R = 14 см.
Тогда ΔАМВ - равнобедренный с основанием АВ и ∠МАВ=∠МВА=30°.
Расстоянием от т.М до стороны АВ есть высота равнобедренного ΔАМВ.
Построим высоту МК. Получили прямоугольный ΔВМК с прямым ∠МКВ и гипотенузой МВ.
Катет МК = sin∠MВK * MВ.
Т.к. ∠МВК = ∠АВМ = 30° и МА = 14 см, то
МК = sin 30° * 14 = 7 (см)
Поделитесь своими знаниями, ответьте на вопрос:
решить: 1. В остроугольном треугольнике АВС серединные перпендикуляры сторон АВ и ВС пересекаются в точке О, ОВ=10 см. Найдите расстояние от точки О до стороны АС, если угол ОАС равен 30°. 2. В треугольнике МНК биссектрисы пересекаются в точке О. Расстояние от точке О до стороны МН=6см, НК= 10 см. Найдите площадь треугольника НОК. 3. В треугольнике АВС медианы АА1, ВВ1 пересекаются в точке О и взаимно перпендикулярны. Найдите площадь треугольника АОВ, если АА1=18 см, ВВ1=24см.
Площадь равнобедренной трапеции равна полусумме оснований, умноженной на высоту.
Высота у нас уже есть Одно из оснований - тоже. Теперь надо найти большее основание. Если опустить высоту с меньшего основания на большее, то получим прямоугольный треугольник, где гипотенузой будет боковая сторона, одним из катетов - высота трапеции, а вторым катетом - часть основания трапеции. Чтобы узнать большее основание трапеции, нам нужно вычислить этот неизвестный катет в треугольнике, потому что длиной большего основания будет сумма двух таких катетов с меньшим основанием. Так как точно такой же треугольник можно получить, опустив высоту из другой точки меньшего основания трапеции. По теореме Пифагора вычисляем неизвестный катет . Значит длина наибольшего катета равна 7+6+6=19 см.