доброй ночи! я понимаю, в чём возникла трудность. но хочу вас заверить — это легко. надеюсь, вы сами это вскоре поймёте.смотрите, чтоб понять, как это делать, нам нужно вспомнить такое понятие как вектор. вектор — направленный отрезок. по условию нам даны координаты вершин треугольника авс. чтоб найти то, что от нас требуется, то первым делом, нам следует найти координаты вектора. в нашем случае — это координаты вектора ab. давайте попробуем найти координаты нужного вектора. но для этого вспомним формулу что и как делать.чтоб найти координаты вектора, надо от точки конца отнять точки начала. вот, когда мы всё это прояснили, то можем приступить к вычислению:
tanu0618
25.01.2020
1) Пусть аbcd - параллелограмм bh- биссектриса тупой угол = 150, тогда острый = 30 При проведении биссектрисы получается треугольник abh, где 2 угла будут равны по 75 градусов, т. е он равнобедренный, значит стороно ab=ah=16. Теперь в этом трегольнике проведем высоту из угла А. Получится что она лежит против угла в 30 градусов и равна половине гипотенузы= 16:2=8 Площадь параллелограмма = 8*(16+5)=168 см^2
2) площадь ромба равна 1/2*d*d1 где d и d1 это диагонали ромба и получается следуещее d/d1=3/4 4d=3d1 d=3d1/4 S=1/2*d*d1 24=1/2*3*d1/4*d1 24=3*d1^2/8 8=d1^2/8 d1^2=8*8 d1=8 d=3*d1/4=3*8/4=6 сторона ромба по теореме пифагора получится так a^2=(d/2)^2+(d1/2)^2 где a- это сторона ромба a^2=(d/2)^2+(d1/2)^2 a^2=(6/2)^2+(8/2)^2=9+16=25 a=5 P=4*a=4*5=20
3. Периметр ромба равен 4*сторона сторона равна периметр\4 сторона ромба равна 52\4=13 см Площадь ромба равна произведению квадрата стороны на синус угла между сторонами отсюда синус угла равен площадь робма разделить на квадрат стороны sin A=120\(13^2)=120\169 Так как угол А -острый, то cos A=корень (1-sin^2 A)=корень (1-(120\169)^2)= =119\169 По одной из основніх формул тригонометрии tg A=sin A\cos A=120\169\(119\169)=120\119 ответ: 120\169,119\169,120\119.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
1. У прямокутному трикутнику АВС катет ВС = 12 см, катет АС = 5 см. Знайдіть гіпотенузу АВ
доброй ночи! я понимаю, в чём возникла трудность. но хочу вас заверить — это легко. надеюсь, вы сами это вскоре поймёте.смотрите, чтоб понять, как это делать, нам нужно вспомнить такое понятие как вектор. вектор — направленный отрезок. по условию нам даны координаты вершин треугольника авс. чтоб найти то, что от нас требуется, то первым делом, нам следует найти координаты вектора. в нашем случае — это координаты вектора ab. давайте попробуем найти координаты нужного вектора. но для этого вспомним формулу что и как делать.чтоб найти координаты вектора, надо от точки конца отнять точки начала. вот, когда мы всё это прояснили, то можем приступить к вычислению: