остроугольный и равнобедренный.
Объяснение:
Если боковые рёбра пирамиды составляют равные углы с плоскостью основания, то основанием высоты пирамиды является центр окружности описанной около многоугольника из основания.
Центр окружности описанной около треугольника лежит внутри треугольника, если он остроугольный.
Так же этот центр лежит на пересечении серединных перпендикуляров к сторонам треугольника. Если центр описанной окружности лежит на одной высоте треугольника, то эта высота лежит на серединном перпендикуляре. А значит высота одновременно является и медианой. Тогда треугольник равнобедренный.
Поделитесь своими знаниями, ответьте на вопрос:
1. Даны точки А(1; 3), В(4; 7), С(-1; -1), D(7; 5), Q(х; 3 а) Найдите координаты векторов АВ и CD. б) Найдите длины векторов АВ и СD. в) Найдите скалярное произведение векторов АВ и СD. г) Найдите косинус угла между векторами АВ и СD . д) Данный угол острый, прямой или тупой (ответ обоснуйте)? е) При каком значении х векторы СВ и DQ перпендикулярны? 2. В равнобедренном треугольнике АВС угол В прямой, АС = 2√2, ВD – медиана треугольника. Вычислите скалярные произведения векторов BD AC, BD BC, BD BD.
остроугольный и равнобедренный.
Объяснение:
Если боковые рёбра пирамиды составляют равные углы с плоскостью основания, то основанием высоты пирамиды является центр окружности описанной около многоугольника из основания.
Центр окружности описанной около треугольника лежит внутри треугольника, если он остроугольный.
Так же этот центр лежит на пересечении серединных перпендикуляров к сторонам треугольника. Если центр описанной окружности лежит на одной высоте треугольника, то эта высота лежит на серединном перпендикуляре. А значит высота одновременно является и медианой. Тогда треугольник равнобедренный.