barg562
?>

На рисунке изображен сектор круга с центром в точке O и радиусом, равным 6 см. ОD = 2 см и ∟DOС = 45°. Найдите площадь закрашенной области с объяснением...

Геометрия

Ответы

Попов1946

Объяснение:

Вот на фото


На рисунке изображен сектор круга с центром в точке O и радиусом, равным 6 см. ОD = 2 см и ∟DOС = 45
zhandarmova
АВ = Рabcd : 4 = 12 : 4 = 3 см
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см

ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.

Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.

Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3  / (2√(5 - 4cos80°))

BB₁ = 3x = 9  / (2√(5 - 4cos80°)) или
BB_{1} = \frac{9}{2 \sqrt{5 - 4cos 80^{0} } }

Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁  = 9  / (2√(5 - 4cos80°)) ≈ 2,2
Вайнер
Внешняя точка - C, центр большой окружности - O
пусть K - точка касания маленькой окружности и описанной в условии фигуры;
ok ∩ mn = L
проведем через неё касательную к обеим окружностям, пусть точки пересечения ей сторон угла MCN A и B.
OK ⊥ AB по св-у касательной
OK ⊥ MN, тк ol - биссектриса равнобедренного треугольника mon (равенство углов следует из равенства треугольников cmo и cno)
таким образом ab || mn
значит Δabc ~ Δamn по двум углам и Δabc - равносторонний (∠cmn =  = ∠mnc = ∠cab = ∠cba = 60 (угол между касательной и хордой равен половине дуги заключенной между ними))
большая окружность - вневписанная для Δabc
=> cn = cm = полупериметру
пусть сторона abc = a
тогда cm = 1.5a
ca / cm = 2 / 3
mn по теореме косинусов из Δmon = 18√3
ab = 2 mn / 3 = 12√3 = a
осталось найти радиус вписанной окружности в равносторонний треугольник abc со стороной 12√3
S = p * r = a²√3 / 4
r = a^2 √3 / (4 * 1.5a) = a * √3 / 6 =   12 * 3 / 6 = 6
Длина окружности с радиусом 6 = 2π * 6 = 12π
ответ: 12π

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

На рисунке изображен сектор круга с центром в точке O и радиусом, равным 6 см. ОD = 2 см и ∟DOС = 45°. Найдите площадь закрашенной области с объяснением...
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Nurislamovna1543
vakhitov100961
NikolayGoncharov
mkrtchyananaida6995
pavlovm8316
karpachevamarina
a96849926288
kreon1
Сергеевна-С.А.1549
НиколаевнаФ
Nonstop788848
alex091177443
Шеина
Fedorovich309
tretyakovamarina201155