сечение пирамиды, проходящее через середины сторон ас, вс и ам, будет прямоугольником (это можно доказать, использовав теорему о трех перпендикулярах) .
площадь прямоугольника равна s = ab, где а, b - стороны прямоугольника.
одна из сторон этого прямоугольника будет средней линией треугольника авс и поэтому равна половине стороны ав, значит равна 3
другая сторона прямоугольника будет средней линией треугольника амс и поэтому равна половине стороны мс и равна 2
s = 3*2 = 6
так что площадь сечения будет 6 кв. ед. ))
Поделитесь своими знаниями, ответьте на вопрос:
По данным рисунка заполните таблицу решить.
Градусная мера полного угла равна 360*
Найдем град. меру данного нам угла:
360/3=120*
Угол в 120* тупой(больше 90*) отсюда следует, что нам дан тупоугольный треугольник.
2)
Сумма углов в любом треугольнике равна 180*
Определим на сколько частей ее разделили:
5+7+3=15 частей
найдем одну часть
180/15=12*
N=12*5=60*
B=12*3=36*
G=12*7=84*
3)
Сумма углов в любом треугольнике равна 180*
Угла при основании р.б равны
(180-77)/2=51.5* - угол напротив основания
4)
Сумма углов в любом треугольнике равна 180*
Угла при основании р.б равны
52*2= 104* - градусная мера обоих углов при основании
180-104=76* угол напротив основания
5)
Сумма углов в любом треугольнике равна 180*
С=180-32-60=88*
6)
Сумма острых углов в прямоугольном треугольнике равна 90*
90-81=9* - второй острый угол
7)
если в треугольнике есть тупой угол(больше 90*), то он тупоугольный
106*>90* - отсюда следует , что наш треугольник тупоугольный