7.
Что-то требование я не нахожу, так что найду все углы.
∠BOC = 137° => <COD = 180-137 = 43°
CO == CD => <COD == <CDO = 43° => <OCD = 180-(43+43) = 94°
<COD вертикален с углом <AOB => <AOB == <COD = 43°
AO == AB => <OAB & <ABO = (180-43)/2 = 68.5°.
ответ: <COD = 43°, <OCD = 94°, <AOB == <COD = 43°, <ABO == <OAB = 68.5°.
5.
<BCD = 180-120 => <BCA = 60°
AB == BC => <BAC == <BCA = 60°
<B = 180-(60+60) = 60°.
6. AB == BC => <C == <A = 50°
<B = 180-(50+50) = 80°
Предполагаю, AD — это бисектриса.
<DAC = 50/2 = 25°
<ADC = 180-(50+25) = 105°.
Поделитесь своими знаниями, ответьте на вопрос:
На боковых сторонах равнобедренного треугольника MNK отложены равные отрезки NA и NB. ND - медиана. Докажите, что MD=ND
Пирамида MABCD, основание - прямоугольник ABCD: AD=BC=18 см; AB=CD=10 см; O- точка пересечения диагоналей AС и BD, MO - высота пирамиды. Так как у прямоугольника диагонали равны и точкой пересечения делятся пополам, то OA = OB = OC = OD - это проекции боковых ребер на основание. Проекции наклонных равны, следовательно, наклонные тоже равны : AM = BM = CM = DM - боковые ребра пирамиды. Тогда ΔAMD = ΔBMC - по трём равным сторонам, ΔAMB = ΔDMC - по трём равным сторонам. Проведем KT║AD ⇒ OK=OT=AD/2 = 18/2 = 9 смΔMOT - прямоугольный, теорема ПифагораMT² = MO² OT² = 12² 9² = 144 81=225 = 15²MT = 15 см см²Проведем FG║DC ⇒ OG=OF=DC/2 = 10/2 = 5 смΔMOF - прямоугольный, теорема ПифагораMF² = MO² OF² = 12² 5² = 144 25 = 169 = 13²MF = 13 см см²Площадь боковой поверхности пирамиды см²Sбок = 384 см²Площадь основания см²Площадь полной поверхности пирамиды S = 384 180 = 564 см²