1) находим высоту пирамиды 6*sin60=6*sqrt(3)/2=3*sqrt(3)
Находим площадь основания
S=3R^2sqrt(3)/4
R=6*cos60=3
S=3*9sqrt(3)/4=27sqrt(3)/4
V=1/3hS=27*sqrt(3)*3sqrt(3)/3*4=81/4=20,25
2) Пусть ВС=2а, угол АВС=30 градусам. Тогда 2a/AB=cos30 Отсюда находим АВ=4а/sqrt(3), тогда радиус окружности R=2a/sqrt(3) Заодно находим АС=2a/sqrt(3) Перейдем к нахождению высоты. Искомая грань SCB Проведем ОЕ перпендикулярно ВС (одновременно ОЕ параллельна АС и является средней линией и потому равна половине АС, ОЕ=a/sqrt(3)). По теореме о трех перпендику лярах SE тоже будет перпендикулярна ВС и потому линейный угол двугранного угла равен SEO=45/ Тогда SO=OE Высота найдена.Далее находим объем конуса по стандартной формуле.
Поделитесь своими знаниями, ответьте на вопрос:
В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AC1 - AB=9; AC1 - AD=5; AC1 - AA1=2. Найдите длину диагонали параллелепипеда.
Из подобия тр-ков АВС, НВА и НАС имеем: АВ/ВН = ВС/ВА, то есть 10/8 = ВС/10.
Отсюда ВС = 100/8 = 12,5дм. НС= ВС-ВН = 12,5 - 8 = 4,5дм.
По Пифагору АН = √(АВ²-ВН²) = 6дм.
АС = √(АН²+НС²) = 7,5дм
Итак, второй катет = 7,5дм, гипотенуза ВС = 12,5дм
P.S
после того, как нашли гипотенузу = 12,5 можно сразу узнать второй катет: √(12,5²-10²) = 7,5дм.