C=180-(D+B)=180-(45+65)=180-110=70°
ответ: 70°
Дано:
ABCD – прямоугольник;
АL – биссектриса угла BAD;
ВL=3 см;
LC=4 см.
Найти:
Р(ABCD)
Так как противоположные стороны прямоугольника паралельны, то AD//BC.
Следовательно угол ALB=угол DAL как накрест-лежащие при параллельных прямых AD u BC и секущей AL.
Угол BAL=угол DAL, так как AL – биссектриса угла BAD.
Исходя из найденного: угол ALB=угол BAL.
Тогда ∆ABL – равнобедренный с основанием AL. Следовательно АВ=BL=3 см.
Периметр прямоугольника можно найти по формуле:
Р=2*(а+б), где а и б – смежные стороны.
Тогда Р(АВСD)=2*(AB+BC)=2*(AB+BL+LC)=2*(3+3+4)=2*10=20 см.
ответ: 20 см.
Утверждения 1) и 2) верные
Объяснение:
Смотри прикреплённый рисунок.
1) EF ║ B₁C₁ как средняя линия Δ DB₁C₁.
Если прямая (EF), не лежащая в плоскости (ABCD) параллельна прямой B₁C₁, лежащей в данной плоскости, то она параллельна этой плоскости. То есть EF ║ABCD или, что то же самое EF ║ABC, и утверждение 1) верное.
2) EF ║ B₁C₁ как средняя линия и B₁C₁ ║ А₁D₁ как параллельные рёбра куба. Следовательно, EF ║ А₁D₁.
Если прямая (EF), не лежащая в плоскости (AА₁D₁D) параллельна прямой A₁D₁, лежащей в данной плоскости, то она параллельна этой плоскости. То есть EF ║AА₁D₁D или, что то же самое EF ║AА₁D₁, и утверждение 2) верное.
3) EF ║ B₁C₁ как средняя линия и ребро куба B₁C₁ ⊥ плоскости грани АВВ₁А₁.
Если одна из параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости, то есть EF ⊥АВВ₁А₁ или, что то же самое EF ⊥ AА₁В₁, и утверждение 3) неверное.
4) Поскольку мы уже установили верные утверждения, то утверждение 4) неверное
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике DBC D = 65°, B = 45°. Найдите С.
Объяснение:
Сумма углов треугольника ровна 180° по теореме.
След что бы найти угол С нужно:
1)180-65-45=70°
ответ:С=70°