Доказано // Удачи ;D
Объяснение:
Сделаем это задание за Теоремой про равность треугольников
Мы знаем что ab = ad тогда треугольник abd - равнобедренный треугольник и также треугольник bdc равнобедренный треугольник
Тогда за третей ознакой равенства:
1. AB = AD
2. BC = CD
3. сторона AC - общая.
Значит, ∠BAO = ∠DAO
Тогда За 1 признаку докажем что эти треугольники равны, так как мы нашли что углы равны
( Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. )
AB = AD AO - общая
∠BAO = ∠DAO за 3 ознакой. С этого ΔABO = ΔADO
Из равенства ΔABO и ΔADO вытекает равенство углов ∠BOA и ∠DOA. поэтому ∠BOA = ∠DOA = 90°. Следовательно AC⊥BD
И этим мы доказали что O - середина BD
Доказано // Удачи ;D
Поделитесь своими знаниями, ответьте на вопрос:
2. Диагональ осевого сечения цилиндра составляет с плоскостью основания цилиндра угол 600. Найдите объем цилиндра, если площадь осевого сечения равна 16 см3. а) 16п см3 ; б)16 см3; в)32п см3 г)8п см3; д)16п см3. 3. Площадь осевого сечения цилиндра равна 21см3, площадь основания - 18п см2 Найдите объем цилиндра. А)9п см3; б)31, 5 см3, в)21п см3, г)63п см3, д)31, 5п см3. 4. Найдите объем конуса , осевое сечение которого представляет собой равнобедренный прямоугольный треугольник с гипотенузой, равной 6 см. а) 18п см3, б)18п см3, в)6п см3, г)54п см3, д)6п см3. 5.Найдите объем конуса , полученного в результате вращения вокруг большего катета прямоугольного треугольника с гипотенузой, равной 2 см, и углом 300. А)18п см3, б)18п см3, в)6п см3, г)2п см3, д)6п см3.
1) Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, АВ=СД по условию, ⇒ ΔВАД=ΔСДА по двум катетам; но в равных треугольниках соответственные углы равны,⇒∠В = ∠С, чтд 2)Рассмотрим треугольники ВАД и СДА -прямоугольные, у них: АД-общая, ∠1=∠2 по условию, ⇒ ΔВАД=ΔСДА по гипотенузе и острому углу; но в равных треугольниках соответственные стороныравны,⇒АВ=СД , чтд 3)Рассмотрим треугольники АВК и АСH -прямоугольные, у них: ∠A- общий, гипотенузы АВ и АС равны АВ=АС по условию, ⇒ ΔАВК=ΔАСH по гипотенузе и острому углу, чтд
Объяснение: