№10
а)Т.к. ∠Д=∠В=90°, то треугольники прямоугольные. В них АД=СВ- по условию,
ДВ-общая. Значит, треугольники АДВ и СВД равны по двум катетам.
№6 ΔСЕД=ΔСFД, ∠Е=∠F=90град.
СД -общая. ЕД=FД по условию, треуг. равны по катету и гипотенузе.
б) ΔАЕД=ΔВFД т.к. ∠АЕД=∠ДFВ = 90°, АД=ВД по условию,
ЕД=FД по условию. треуг. равны по гипотенузе и катету.
в) треугольники АСД И ВСД равны, т.к. составлены из двух равных, а именно АСД из треугольников АЕД И СЕД, треугольник ВСД составлен из треугольников ВFД и ДFС
№7.
а)ΔМSR=ΔNRS, в них ∠M=∠N=90°, ∠NRS=∠MSR по условию, RS-общая. Треугольники равны по острому углу и гипотенузе.
б) Если от равных треугольников NRS и MSR отнять один и тот же ΔRTS, то останутся равные треугольники, а именно
ΔRMT=ΔSNT
№8.
а)∠К=∠L=90°
ΔМLN =ΔNКМ. В них МN-общая, ∠М=∠N по условию, значит треугольники равны по острому углу и гипотенузе.
б)ΔКRМ=Δ LRN, (∠L=∠ К=90°) т.к. если от равных ΔМLN и ΔNКМ отнять один и тот же треугольник МRN, то останутся тоже равные треугольники.
№9. ΔАДЕ=ΔВFМ, в них ∠М=∠Е=90°, АД=FВ по условию,
и так как ДС=FC, то АС=СВ, и ΔАСВ- равнобедренный, в нем углы при основании равны. угол А равен углу В. Значит, треугольники равны по острому углу и гипотенузе.
1) Т к ВТ-биссектриса, то угол АВТ=ТВС=60 градусов.В паралелограмме противолежащие стороны параллельны и равны т е ВТ-секущая относительно параллельных прямых ВС и АК => угол СВТ=ВТА=60градусов, тогда треугольник АВТ-равнобокий, а т к два угла по 60 градусов, то третий угол тоже 60 градусов, значит треугольник равносторонний => АВ=АТ=ВТ=15см.
2) т к противолежащие стороны в паралелограмме равны, то ВС=АК=15+10=25см.
Рассмотрим треугольник АВС:
По теореме косинусов: АС² = 15² +25² -2*15*25*cos120 = 225+ 625 + 375 = 1225
АС = √1225 = 35см.
Поделитесь своими знаниями, ответьте на вопрос:
Прямая проходит через А и не проходит через точку В. Какая из этих точек принадлежит прямой
ответ:A
ответ должен содержать более 20 символов поэтому я это пишу.