разделим решение на 2 части: анализ и нахождение величин
1) анализ
обозначим боковые стороны и меньшее основание за x
длина той части высоты, которая ближе к меньшему основанию - м (далее - во)
длина той части высоты, которая ближе к большему основанию - б (далее - он)
пусть трапеция - abcd. bc - меньшее основание, аb и cd - боковые стороны.
проведём высоту bh, диагональ - ас. точка пересечения - о
треугольники овс и она - подобные (оба прямоугольные, есть вертикальные углы аон=вос)
тогда ан = вс* (он/во) = х* (б/м)
площадь трапеции: s = bh*(bc+ad)/2 = bh*(bc+ah) = 18*x*(1+б/м)
итак, осталось найти х.
поясню, почему требуется обозначения б и м. есть 2 решения (в зависимости от того, какие длины мы присвоим отрезкам он и во) . поэтому будут 2 значения б/м:
б/м = 10/8 или б/м = 8/10
2) нахождение величин
обозначим угол всн = t (дальше легче писать)
cos (t) = ah/ab = (x*(б/м)) /x = б/м.
sin (t) = вн/ав = 18/х
cos^2(t) + sin^2(t) = 1
(б/м) ^2 + 324/x^2 = 1
324/x^2 = 1 - (б/м) ^2
так как 324/x^2 > 0, то приходим, что б/м = 8/10. (т. е. второго решения больше нет) .
итого: 324/x^2 = 1 - (8/10)^2 = 0,36
x = 30
s = 18*x*(1+б/м) = 18*30*(1+ 8/10) = 972
Поделитесь своими знаниями, ответьте на вопрос:
Дан треугольник авс, в нём проведена биссектриса ал, площадь треугольника асл равна 36, синус угла в равна 0, 9. найдите площадь авс
Основание правильной четырехугольной пирамиды - квадрат.
Проекция вершины пирамиды падает в центр её основания.
Пусть данная пирамида МАВСД.
О - точка пересечения диагоналей основания и является его центром .
Искомый угол - это линейный угол двугранного угла между плоскостями, содержащими противоположные грани данной пирамиды.
Двугранный угол измеряется величиной своего линейного угла.
Чтобы ответить на вопрос задачи, нужно построить нужный линейный угол и найти его величину..
Через вершину пирамиды М проведем прямую РЕ || АД и, значит, параллельно ВС и основанию пирамиды - свойство). Плоскости РВСЕ и РАДЕ содержат противоположные грани и РЕ - линия их пересечения.
Апофемы МК и МН, являясь высотами боковых граней, перпендикулярны АД и ВС соответственно, ⇒, перпендикулярны и РЕ - параллельной им линии пересечения плоскостей, содержащих грани.
Угол КМН, образованный лучами, исходящими из одной точки линии пересечения РЕ и перпендикулярными ей - искомый по определению.
Апофемы противоположных граней правильной пирамиды равны между собой.
Следовательно, треугольник КМН равнобедренный, и угол КМН равен 180º-2*50º=80º