Отрезок ЕС равен 1 см.
Объяснение:
Требуется найти отрезок ОС.
Дано: ΔАВС - равнобедренный;
∠А = 75°;
CD ⊥ АВ; DE ⊥ BC;
ВЕ = 3 см.
Найти: ЕС.
1. Рассмотрим ΔΔАВС - равнобедренный;
Углы при основании равнобедренного треугольника равны.⇒ ∠А = ∠С = 75°
Сумма углов треугольника равна 180°.⇒ ∠В = 180° - (75° + 75°) = 30°
2. Рассмотрим ΔDBE - прямоугольный.
∠В = 30°
Катет, лежащий против угла в 30°, равен половине гипотенузы.Пусть DE = x см, тогда DB = 2x см.
По теореме Пифагора:
BD² = DE² + BE²
4x² = x² + 9
3x² = 9
x² = 3
x = √3
DE = √3 см
3. Рассмотрим ΔАDC - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠1 = 90° - ∠А = 90° - 75° = 15°
4. Рассмотрим ΔEDC - прямоугольный.
∠2 = ∠С - ∠1 = 75° - 15° = 60°
∠3 = 90° - ∠2 = 90° - 60° = 30°
Пусть ЕС = у см, тогда DC = 2у см (катет, лежащий против угла 30°)
По теореме Пифагора:
DC² = DE² + EC²
4y² = 3 + y²
3y² = 3
y² = 1
y = 1
Отрезок ЕС равен 1 см.
Поделитесь своими знаниями, ответьте на вопрос:
ЗА ОТВЕТ № 375(1А, 2А.4В, 5С)
Объяснение:
1) V(призмы)=S(осн)*h, S(осн)=S(равн.треуг.)=( а²√3)/4 , h==А₁О.
2) ΔАА₁О- прямоугольный , тк А₁О⊥(АВС) :
АО=АА₁*cos(∠A₁AO) , АО=6*1/2=3( см) ;
А₁О=АА₁*sin(∠A₁AO) , А1О=6*√3/2=3√3( см) .
3) ΔABC- равносторонний .Точка пересечения высот совпадает с точкой пересечения медиан, серединных перпендикуляров ⇒ О-центр описанной окружности : АО=R=3 см. Тогда сторона равностороннего треугольника a₃ = 3√3(см) ( формула a₃ = R√3 ).
S(осн)=S(равн.треуг.)=( 27√3)/4 (см²) .
4) V(призмы)= ( 27√3)/4 *3= (81√3)/4 (см³).