АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
syana80
17.10.2021
Дано: АВСД - ромб угол А = 30 градусов ВМ и ВК - перпендикуляры ВМ = 5 см Найти : Р = АВСД = ? Решение : У нас образовался прямоугольный треугольник - ВАМ угол А = 30 градусов угол М = 90 градусов ( т. к. проведен перпендикуляр ВМ ) отсюда следует, что угол В = 60 градусов (так как сумма углов треугольника равна 180 градусов 180 - 120 = 60 градусов ) , а ВМ = 5 см ( по условию) Вм катет, лежащий против угла 30 градусов ( мы знаем теорему , что угол лежащий против угла 30 градусов равен половине гипотенузы ) А гипотенузой является сторона АВ значит она равна 10 см ( 5см + 5см = 10 см) теперь мы находи Р = ромба = ? Р = АВСД = 10 см * 4 ( стороны ) = 40 см ( так как все стороны ромба равны мы умножаем на четыре) , отсюда следует что Р = АВСД = 40 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дано: треугольник КРМ, КР = РМ, внешний угол при вершине К равен 1250 Найдите угол при вершине Р.
Объяснение:
внутренний угол при К=180-125=55°(по свойству смежности углов)
∠К=∠М=55°(по свойству равнобедренного треугольника)
∠Р=180-110=70°