У параллелограмма всего 4 угла. В параллелограмме есть пара острых равных между собой углов, а также пара равных тупых углов (случай прямоугольника опустим, у него все углы равны, в этой задаче такого нет). Поэтому если мы найдем острый угол, а также тупой угол параллелограмма, то мы нашли все углы.
Теперь найдем их Ситуация следующая: есть две параллельные прямые, каждая из смежных с ними сторон является секущей. Получается, что имеются две пары односторонних друг для друга углов. Рассмотрим любую из них (для второй все то же самое)
Пусть - острый угол, - тупой. Тогда имеет место соотношение
Известно, что сумма односторонних углов равна 180°, получаем вот такое уравнение:
ответ: 72°, 72°, 108°, 108°
Поделитесь своими знаниями, ответьте на вопрос:
УМОЛЯЮ! ОДНО ЗАДАНИЕ! 30б :) --- Задание 1 С циркуля и линейки постройте равнобедренный треугольник по основанию a и биссектрисе b, проведённой к основанию. Screenshot_2.png - смотри в прикреплённых файлах :) Решение проведите в 4 этапа: Этап 1: используя свойства равнобедренного треугольника, проведите анализ задачи. Определите, какие построения вам понадобятся. Этап 2: выполните построение. Этап 3: докажите, что полученный треугольник – равнобедренный, с длиной основания a и длиной биссектрисы b. Этап 4: исследуйте, сколько решений имеет задача. Всегда ли она будет иметь решения при различных значениях a и b?
У параллелограмма всего 4 угла. В параллелограмме есть пара острых равных между собой углов, а также пара равных тупых углов (случай прямоугольника опустим, у него все углы равны, в этой задаче такого нет). Поэтому если мы найдем острый угол, а также тупой угол параллелограмма, то мы нашли все углы.
Теперь найдем их Ситуация следующая: есть две параллельные прямые, каждая из смежных с ними сторон является секущей. Получается, что имеются две пары односторонних друг для друга углов. Рассмотрим любую из них (для второй все то же самое)
Пусть - острый угол, - тупой. Тогда имеет место соотношение
Известно, что сумма односторонних углов равна 180°, получаем вот такое уравнение:
ответ: 72°, 72°, 108°, 108°