Сечение цилиндра, проведенное параллельно его оси, находится на расстоянии 2 см от нее и является квадратом. Площадь боковой поверхности цилиндра равна 8√3π см2 . Найдите площадь сечения.
Объяснение:
S( бок цилиндра)=2πrh, где , r — радиус основания цилиндра, h — высота цилиндра. Тогда 8√3π=2πrh или 4√3=rh . Возведем обе части в квадрат( зачем? пригодится) (4√3)²=r²h ² , 48=r²h² (*) .
В сечении -квадрат АВСК. Причем АВ=BC=h. Площадь сечения S(квадрата)=BC²=h².Используя (*) h²=S=48:r² .
Т.к. сечение цилиндра, проведенное параллельно его оси, находится на расстоянии 2 см , то ОМ⊥ВС , ОМ=2 см.
ΔВСО-равнобедренный и ОМ-высота , а значит медиана . Тогда
ВМ= .
ΔВМО-прямоугольный по т. Пифагора r²=2²+ или
r²=4+ или r²= .
S=48 : = (см²)
В параллелограмме АВСD треугольники АВС и АСD равны по трем сторонам (АВ=СD и ВС=АD как стороны параллелограмма, а сторона АС - общая). Итак, Sabc=Sacd.
В треугольниках АВС и АСD ВМ и DМ - медианы (так как диагонали параллелограмма в точке пересечения делятся пополам и АМ=МС).
Но медианы делят треугольники на два равновеликих. Значит, Samb=Smbc=Samd=Scmd (так как равные треугольники АВС и АСD делятся также на два равных).
Итак, площадь параллелограмма АВСD равна четырем площадям треугольника АМВ. Или, что одно и то же, площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB. Что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Абырғаларының ұзындықтары: 1) 1, 2, 3, 4, 5; 2) 3, 4, 7, 10, 24 сандарына пропорцтонал болатын бесбұрыш бар болама?