Напишу для первого
За т.синусов
MN MK
=
sinK sinN
Найдем кут K
КутК=180-(КутN+КутМ)
180-(20+80)=80
sinK = 0.984
sinN = 0.984
MN = (МК x sinK):sinN
MN = (10 x 0.984):0.984 = 10
И тут я понял, что скорее всего вам нужно найти сторону MN через равнобедренность треугольника (скорее всего тему косинусов вы еще не проходили), поэтому напишу второе решение:
Докажем равнобедренность треугольника
КутК=180-(КутN+КутМ)
180-(20+80)=80
Так как углу углы при основе одинаковые, то треугольник равнобедренный и из этого выплывает что МК=MN=10
Поделитесь своими знаниями, ответьте на вопрос:
Дан треугольник ABC. AC= 25, 8 см; ∢ B= 30°; ∢ C= 45°. ответ: AB= _√_ см.
Нехай маємо прямокутний трикутник ABC (∠C=90), у якого AC=√5 см – катет і BH=4 см – проекція катета BC на гіпотенузу AB (за умовою).
прямокутний трикутник, рисунок Проведемо висоту CH=h до гіпотенузи AB (AB⊥CH).
За властивістю прямокутного трикутника
h^2= AH•BH
(це виводиться із подібності прямокутних трикутників ABC і CBH).
Нехай AH=x - проекція катета AC на гіпотенузу AB, тоді h^2=4x.
У прямокутному ΔACH (∠AHC=90), у якого AH=x і CH=h=2√x – катети, AC=√5 см – гіпотенуза, за теоремою Піфагора запишемо:
AH^2+CH^2=AC^2, x^2+4x=5, x^2+4x-5=0,
за теоремою Вієта, отримаємо
x1=1 і x2=-5<0, звідси AH=1 см.
AB=AH+BH=1+4=5 см – гіпотенуза ΔABC.
Відповідь: 5.