Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.
Периметр — общая длина границы фигуры.
Два и более треугольника можно назвать равными в том случае если у них стороны соответствующие стороны и углы равны.
Теорема - это математическое утверждение, истинность которого установлена путём доказательства.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
6)Отрезок, образующий с данной прямой угол 90 градусов.
7)Через данную точку к данной прямой можно провести перпендикуляр и только один. А если предположить, что можно провести, скажем, два перпендикуляра из заданной точки, то в получившемся треугольнике будет два прямых угла, что невозможно.
8)медианой-отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
9)Треугольник имеет три медианы
10)Биссектриса треугольника - отрезок биссектрисы одного из его углов до ее пересечения с противолежащей стороной треугольника.
11)3 биссектрисы
12)Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
13)3 высоты
14)Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине.Боковыми называются равные стороны, а последняя неравная им сторона — основанием.
15)Треугольник у которого все стороны равны между собой
16)Свойства равнобедренного треугольника. Свойство первое. В равнобедренном треугольнике углы при основании равны. Доказательство теоремы: Дан равнобедренный ΔABC, в котором AB = AC. К его основанию проведена биссектриса AD. Так как AD является биссектрисой, соответственно, угол ∠1 будет равен углу ∠2. Сторона AD – общая для ΔADB и ΔADC.
17) В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
18)Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника то такие треугольники равны.
19)Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
20)Определение – это первичное описание объекта.
21)Окружность - геометрическое место точек, равноудаленных от одной точки, называемой центром.
Хорда, проходящая через центр окружности, называется диаметром Диаметр — это хорда на окружности, и проходящий через центр этой окружности . Также диаметром называют длину этого отрезка.
Радиус — отрезок, соединяющий центр окружности (или с любой точкой, лежащей на окружности (или сфере), а также длина этого отрезка.
22)
1.Треуго́льник— геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника.
2.Периметр- это сумма всех сторон.
3. Треугольники называются равными, если у них соответствующие стороны равны.
4.Теорема-это утверждение, которое было доказано на основе ранее установленных утверждений: других теорем и общепринятых утверждений, аксиом. Другими словами, теорема - это математическое утверждение, которое необходимо доказать.
5.Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
6.Отрезок, один конец которого данная точка, а другой конец лежит на прямой, образующий с прямой угол 90°, называется перпендикуляром, проведенным из данной точки к прямой.
7.Через данную точку к данной прямой можно провести перпендикуляр и только один.
8.Медиа́на треугольника ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
9.Треугольник имеет три медианы
10.Биссектриса треугольника - отрезок биссектрисы одного из его углов до ее пересечения с противолежащей стороной треугольника.
(как ещё говорят- биссекртриса- это такая крыса которая делит угол попалам)
11.Треугольник имеет 3 биссекртисы.
12.Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону называется высотой треугольника.
13.Треугольник имеет 3 высоты.
14.Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием.
15.Треугольник у которого все стороны равны между собой, называется равносторонним
16. В равнобедренном треугольнике углы при основании равны.
17.В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
18.Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника то такие треугольники равны.
19.Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны
20.Определение – это первичное описание объекта
21.Радиус окружности - равные отрезки, соединяющие центр с точками окружности. Хорда - отрезок, соединяющий любые две точки окружности. Диаметр окружности - хорда, проходящая через центр. ОКРУЖНОСТЬ - геометрическое место точек, равноудалённых от одной точки, называемой ЦЕНТРОМ
22.Например, дан угол с вершиной А и луч OM. Проведем окружность произвольного радиу с центром в вершине А данного угла. Эта окружность пересекает стороны угла в точках B и C. Затем проведем окружность того же радиуса с центром в начале данного луча OM. Она пересекает луч в точке D. После этого построим окружность с центром D, радиус которой равен BC. Окружности с центрами O и D пересекаются в двух точка. Одну из этих точек обозначим буквой E. Угол MOE - искомый.
23.Например, если Вам нужно построить биссектрису угла, равного 78 градусов, то нужно приложить транспортир к одной из сторон этого угла, отметить точку возле метки 78 / 2 = 39 градусов и провести луч из вершины заданного угла через полученную точку. Это и будет биссектриса угла 78 градусов.
24.1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а.
25.Надо построить из каждой из вершин отрезка окружности одинакового радиуса (причем радиус должен быть меньше самого отрезка и больше половины отрезка (приблизительно на глаз)). Эти окружности пересекаться в двух точках. линия которая проходит через обе эти точки пересечет данный отрезок в середине.
Поделитесь своими знаниями, ответьте на вопрос:
Даны два угла һk и һ1k1, и отрезок РQ. Постройте треугольникABC так, чтобы АВ = PQ, уголA = углуhk, уголB = 1/2углу Не игнорируйте
напиши свою задачу в интернете и там найди сайт по имени
оставлю имя в комментариях
напиши мне любую слову в коммент и я тебе дам имя сайта
Объяснение:
проста если я оставлю ссылку меня будет бани.
так что найди как я сказал в ответе,