Переведем значения диагоналей в одни и те же единицы измерения, 14 дм = 140 см 1) Для того, чтобы вычислить периметр ромба, наобходимо знать стороны ромба. Пусть ромб ABCD, диагонали BD (140 см) и AC (48 см). Точка пересечения диагоналей О Рассмотрим треугольник AOB - прямоугольный, так как диагонали в ромбе пересекаются под углом 90 градусов. AO=OC=1/2 AC = 24 см BO=OD=1/2 BD = 70 см По теореме Пифагора найдем сторону AB = √AO²+OB² AB =√70²+24² = √4900+576=74 см Так у ромба все стороны равны, то периметр ромба P = 4* AB = 74*4 = 296 см или 29 дм 6 см
2)Площадь ромба равна половине произведений его диагоналей, S = 1/2 * 140 * 48 = 3360 кв. см = 33,6 кв. дм
Ka-shop2791
21.02.2023
Обозначим основание призмы буквой а, а высоту призмы буквой с О - точка пересечения диагоналей основания. В1О - высота сечения АВ1С α -угол между плоскостью сечения АВ1С и ребром В1В, который нужно найти , этот угол - есть угол между высотой сечения В1О и ребром ВВ1 Решение. АО = ВО = а/√2 АВ1 = √(а² + с²) Высота сечения В1О = √(АВ1² - АО²) = √(а² + с² - а²/2) = (√(а² + 2с²))/√2 Площадь сечения АВ1C S1 = АО · В1О = = а/√2 · (√(а² + 2с²))/√2 = а/2 · √(а² + 2с²) Площадь боковой грани S2 = а·с По условию S1 = S2 ас = а/2 · √(а² + 2с²) → а² = 2с² Наконец-то найдём и синус угла α sin α = ВО/В1О = а/√2 : (√(а² + 2с²))/√2 = а / √(а² + 2с²) = = а / √(а² + а²) = 1/√2 Отсюда следует, что α = 45° ответ: 45°
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Основа і бічна сторона рівнобедреного трикутника відповідно дорівнюють 4√2 см і 4 см знайдіть кути трикутника
14 дм = 140 см
1) Для того, чтобы вычислить периметр ромба, наобходимо знать стороны ромба.
Пусть ромб ABCD, диагонали BD (140 см) и AC (48 см). Точка пересечения диагоналей О
Рассмотрим треугольник AOB - прямоугольный, так как диагонали в ромбе пересекаются под углом 90 градусов.
AO=OC=1/2 AC = 24 см
BO=OD=1/2 BD = 70 см
По теореме Пифагора найдем сторону AB = √AO²+OB²
AB =√70²+24² = √4900+576=74 см
Так у ромба все стороны равны, то периметр ромба P = 4* AB = 74*4 = 296 см или 29 дм 6 см
2)Площадь ромба равна половине произведений его диагоналей,
S = 1/2 * 140 * 48 = 3360 кв. см = 33,6 кв. дм