У нас есть 2 варианта внешнего угла — внешний угол угла, противоположному основанию, и внешний угол угла — противоположный боковой стороне.
Вариант 2-ой таков: угол, противоположный боковой стороне равен: 180-150 = 30°, в этом случае — угол, противоположный основанию равен: 180-(30+30) = 120°.
Боковая сторона равна 10, тоесть нам уже известно 2 стороны равнобедренного треугольника (боковые).
Теперь — зная их, и угол между ними (угол 120 градусов) — найдём основание по теореме Косинусов:
Нам известны все стороны равнобедренного треугольника.
Формула вычисления радиуса описанной окружности около равнобедренного треугольника такова:
Диаметр в 2 раза больше радиуса, то есть: D = 2R = 19.93.
На этот раз — формула вычисления основания, зная боковую сторону, и угол между ними — будет такова:
В этом случае — радиус описанной окружности равен:
D = 2R = 5.2*2 = 10.4.
Вывод: D = 10.4.
lovel24
28.05.2021
Решить задачу проще, если сделать рисунок. Высота параллелограмма перпендикулярна двум его сторонам: АD и ВС. Тупой угол АВС она делит на острый угол и прямой угол. Разница между углами по условию 20° Угол АВН меньше угла АВС АВН=90°-20°=70° Тупой угол АВС =90°+70°=160° Сумма углов при одной стороне параллелограмма равна 180° Угол ВАD=180°-160°=20° В параллелограмме две пары углов. Одна пара по 20°, вторая - по 160° —— Обратим внимание на то, что острый угол параллелограмма равен разнице между углами, на которые высота делит тупой угол. Этому есть простое объяснение. В треугольнике АВН сумма острых углов ВАН и АВН равна 90° Величина угла А как раз и является разницей между 90° и углом АВН.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике АВС проведена биссектриса СD, угол СE равен 126°, угол ВАС равен 108°. Найдите угол АВС. ответ дайте в градусах.
У нас есть 2 варианта внешнего угла — внешний угол угла, противоположному основанию, и внешний угол угла — противоположный боковой стороне.
Вариант 2-ой таков: угол, противоположный боковой стороне равен: 180-150 = 30°, в этом случае — угол, противоположный основанию равен: 180-(30+30) = 120°.
Боковая сторона равна 10, тоесть нам уже известно 2 стороны равнобедренного треугольника (боковые).
Теперь — зная их, и угол между ними (угол 120 градусов) — найдём основание по теореме Косинусов:
Нам известны все стороны равнобедренного треугольника.
Формула вычисления радиуса описанной окружности около равнобедренного треугольника такова:
Диаметр в 2 раза больше радиуса, то есть: D = 2R = 19.93.
Вывод: D = 19.93.
Вариант 1-ый:
Внешний угол угла — противоположного основанию, тоесть: α = 180-150 = 30°.
Равные углы, противоположные боковым сторонам равняются: (180-30)/2 = 75°.
На этот раз — формула вычисления основания, зная боковую сторону, и угол между ними — будет такова:
В этом случае — радиус описанной окружности равен:
D = 2R = 5.2*2 = 10.4.
Вывод: D = 10.4.