13 см
Объяснение:
Диагонали ромба пересекаются под прямым углом, точкой пересечения делятся пополам и делят ромб на 4 равных прямоугольных треугольника с катетами 40:2=20 см, и 30:2=15 см. Стороны ромба - гипотенузы этих треугольников. По т.Пифагора АВ=√(AO²+BO²)=√(20²+15²)=25 см..
Расстояние от точки до прямой измеряется длиной проведенного между ними перпендикуляра. Наклонная КН - искомое расстояние- перпендикулярна АВ, ОН - её проекция. По т. о трех перпендикулярах ОН перпендикулярна АВ и является высотой треугольника АОВ.
Центр ромба О равноудален от его сторон. ОН=2S(АОВ):АВ=20•15:25=12 см.
КО перпендикулярен плоскости ромба ABCD ⇒ ∆ KOН прямоугольный. КН=√(КО²+ОН²)=√(25+144)=13 см
13 см
Объяснение:
Диагонали ромба пересекаются под прямым углом, точкой пересечения делятся пополам и делят ромб на 4 равных прямоугольных треугольника с катетами 40:2=20 см, и 30:2=15 см. Стороны ромба - гипотенузы этих треугольников. По т.Пифагора АВ=√(AO²+BO²)=√(20²+15²)=25 см..
Расстояние от точки до прямой измеряется длиной проведенного между ними перпендикуляра. Наклонная КН - искомое расстояние- перпендикулярна АВ, ОН - её проекция. По т. о трех перпендикулярах ОН перпендикулярна АВ и является высотой треугольника АОВ.
Центр ромба О равноудален от его сторон. ОН=2S(АОВ):АВ=20•15:25=12 см.
КО перпендикулярен плоскости ромба ABCD ⇒ ∆ KOН прямоугольный. КН=√(КО²+ОН²)=√(25+144)=13 см
Поделитесь своими знаниями, ответьте на вопрос:
В равнобедренном треугольнике ABC BE - высота, AB = BC Найдите BE, если AC = 4 корень из 42 и AB = 13
АЕ=4√42/2=2√42
ВЕ=√АВ²-АЕ²
ВЕ=√169-168
ВЕ=1