В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
sev-94428
28.07.2022
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Трикутнику ABC XC = 90°, AC = 8 см, ВС = 6 см. Знайдіть:1) tg B;. 2) sin A
Найдём гипотенузу по теорема Пифагора:
с² = а² + b²
c = √a² + b²
c = √8² + 6² = √64 + 36 = √100 = 10 см
АВ = 10 см.
1) tg B = АС/СВ
tg B = 8/6 = 4/3
2) sin A = СВ/AB
sin A = 6/10 = 2/5
ответ: 4/3, 2/5.