ABCD - прямоугольная трапеция, угол A и угол B - прямые, угол C = 150 (очевидно т.к. угол D- острый) BC = 3 CD=4
Проведем CL перпендикулярно AD таким образом что BC=AL=3
Угол DCL = 150-90=60 (т.к угол BCL - прямой)
Рассмотрим треугольник CLD - прямоугольный с прямым углом L
угол D=180 - (60+90)=30
катет в прямоугольном треугольнике лежащий против угла в 30 градусов равен половине гипотенузы следовательно:
CL = 0.5CD=0.5*4=2
LD по теореме пифагора LD=sqrt[16-4]=sqrt12=2sqrt3
AD = AL+LD= 3+2sqrt3
Площадь трапеции S= (0,5 (a+b)) *h
CL = h
значит S= (0,5(3+3+2sqrt3)) *2=6+2sqrt3
Вроде как правильно
Поделитесь своими знаниями, ответьте на вопрос:
по геометрии, дайте ответ по геометрии, дайте ответ
Площадь квадрата (основания) ABCD равна AD^2=a^2
Площадь грани ADM(площадь прямоугольного треугольника ) равна 1\2*AD*DM=1\2*a^2.
Площадь грани СDM(площадь прямоугольного треугольника ) равна 1)1\2*СD*DM=1\2*a^2.
MD перпендикулярно AD, AD перпендикулярно AB, значит MB перпендикулярно AB
По теореме Пифагора : MB=корень(AD^2+MD^2) =корень(а^2+а^2)=а*корень(2)
По теореме Пифагора : MC=корень(CD^2+MD^2) =корень(а^2+а^2)=а*корень(2)
Площадь грани BСM(площадь прямоугольного треугольника ) равна
1\2*BD*DM=корень(2)\2*a^2.
MD перпендикулярно CD, CD перпендикулярно BC, значит MC перпендикулярно BC
Площадь грани BDM(площадь прямоугольного треугольника ) равна 1\2*BC*MC=корень(2)\2*a^2.
Площадь поврехности пирамиды MABCD равна = площадь основания ABCD+площадь грани ADM+ +площадь грани СDM+площадь грани ABM+площадь грани BCM= a^2+1\2*a^2+1\2*a^2+
+ корень(2)\2*a^2+ корень(2)\2*a^2=a^2*(2+корень(2)).
ответ: a^2*(2+корень(2))