Теорема - это высказывание, истинность которого необходимо доказать.
В теореме можно выделить 3 части:
1) преамбула. В ней описываются множества, относительно которых задана теорема. Это области определения высказывания А и высказывания В.
2) условия теоремы. Это предложение А или то что дано в теореме.
3) заключение теоремы. Это предложение В или то что нужно доказать в теореме.
Различают 4 вида теорем:
1. Данная теорема. Например: вертикальные углы равны. Если углы вертикальные, то они равны.
2. Теорема обратная данной. Например: если углы равны, то они вертикальные (данная теорема - ложна).
3. Теорема противоположная данной - Если углы не вертикальные, то они не равны (данная теорема ложна).
4. Теорема противоположная обратной - Если углы не равны, то они не вертикальные. (Истинная теорема)
safin8813
04.02.2020
А1. ∠САО = ∠МВО как накрест лежащие при пересечении АС║ВМ секущей АВ, ∠СОА = ∠МОВ как вертикальные, ⇒ ΔСОА подобен ΔМОВ по двум углам. СО : ОМ = АС : МВ 10 : ОМ = 15 : 3 ОМ = 10 · 3 : 15 = 2 см СМ = СО + ОМ = 10 + 2 = 12 см
А2. ∠АРК = ∠АСВ как накрест лежащие при пересечении КР║ВС секущей АС, ∠А общий для треугольников АКР и АВС, ⇒ ΔАКР подобен ΔАВС по двум углам. Отношение периметров подобных треугольников равно коэффициенту подобия: Pakp : Pabc = AK : AB Pakp = Pabc · AK / AB = (16 + 15 + 8) · 4 / 16 = 39 / 4 = 9,75 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Довести що сторони паралелограм обернено пропорційні відповідним висотам
Теорема - это высказывание, истинность которого необходимо доказать.
В теореме можно выделить 3 части:
1) преамбула. В ней описываются множества, относительно которых задана теорема. Это области определения высказывания А и высказывания В.
2) условия теоремы. Это предложение А или то что дано в теореме.
3) заключение теоремы. Это предложение В или то что нужно доказать в теореме.
Различают 4 вида теорем:
1. Данная теорема. Например: вертикальные углы равны. Если углы вертикальные, то они равны.
2. Теорема обратная данной. Например: если углы равны, то они вертикальные (данная теорема - ложна).
3. Теорема противоположная данной - Если углы не вертикальные, то они не равны (данная теорема ложна).
4. Теорема противоположная обратной - Если углы не равны, то они не вертикальные. (Истинная теорема)