2. Сумма углов восьмиугольника вычисляется по формуле:
. Разделив это число на 8, найдем чему равен один угол. . По определению, внешний угол это угол, смежный с любым внутренним. А так как сумма смежных углов равна 180 градусам, получаем: , что и сходится с утверждением.
3. Разобьем параллелограмм на четыре треугольника путем проведения в нем диагоналей. Для произвольного треугольника на плоскости всегда выполняется неравенство треугольника: сумма длин двух сторон больше или равна длине третьей. Дальше все понятно, во вложении.
5. У правильного многоугольника с нечентым числом сторон осями симметрии являются прямые, выходящие из вершин углов, которые перпендикулярны противолежащей углам сторонам. Для правильного многоугольника точка пересечения этих прямых будет являться центром описанной окружности. А по свойству тех же правильных многоугольников, это точка будет еще и центром вписанной окружности. Следовательно, центр вписанной окружности является центром симметрии пятиугольника.
Поделитесь своими знаниями, ответьте на вопрос:
Прямые а и с, изображённые на рисунке, параллельны. ∠3 = 140°. Найдите величину ⦟1.
Трапеция АВСД, АД=10, ВС=5, АС=9, ВД=12
из вершины С проводим СН параллельную ВД до пересечения с продолжением АД, получаем параллелограмм ДВСН, где ВД=СН=12, ВС=ДН=5. АН=АД+ДН=10+5=15
площадь треугольника АСН = площади трапеции АВСД, если проведем высоту с вершины С на АД то она = как высоте треугольника АСН так и высоте трапеции, а ВС+АД = АД+ДН
площадь АСН= корень(p x (p-a) x (p-b) x (p-c)), где р-полупериметр, остальное стороны
полупериметр= (АС+СН+АН)/2=(9+12+15)/2=18
площадьАСН=корень (18 х 9 х 6 х 3) = 54 = площадь трапеции АВСД