Кедрин Карлен
?>

Периметр осевого сеченияцилиндра равен 28 м., диаметр относитсяк высоте как 4:3. Найдите объёмцилиндра.

Геометрия

Ответы

nataliaterekhovasinger2
Дано:

цилиндр.

Р осевого сечения = 28 м

D : h = 4 : 3

Найти:

V - ?

Решение:

Пусть АВ, ВС, AD, CD - стороны осевого сечения.

АВ = CD = h (или ОО1)

D = AD = BC

=> осевое сечение данного цилиндра (если секущая плоскость совпадает с осью цилиндра) - прямоугольник.

Осевое сечение не может быть квадратом, так как в квадрате все стороны равны, а у нас D : h = 4 : 3, по условию.

Составим уравнение, с которого определим величину высоты и диаметра (а также сторон прямоугольника):

Пусть х - часть диаметра; высоты, 4х - диаметр, 3х - высота.

Так как D = AD = ВС => мы находим ещё и сторону AD

Так как АВ = CD = h => мы находим ещё и сторону АВ.

P прямоугольника = (a + b) * 2 = 28 см, по условию.

(4х + 3х) * 2 = 28

7х * 2 = 28

14х = 28

х = 2

2 см - часть, высоты и диаметра (можно ещё сказать, что это часть AD, AB, CD и ВС)

D = AD = BC = 2 * 4 = 8 см

h = AB = CD = 2 * 3 = 6 см

V = пR²h

R - радиус.

R = D/2 = 8/2 = 4 см

V = п((4)² * 6) = 96п см^3

ответ: 96п см^3
Периметр осевого сеченияцилиндра равен 28 м., диаметр относитсяк высоте как 4:3. Найдите объёмцилинд
bhg50
Пусть этот треугольник будет АВС, где АВ и АС это катеты, а ВС - гипотенуза. Так как один угол в прямоугольном треугольнике равен 60, то другой 90-60=30
Значит, что данный треугольник  - это половина равностороннего треугольника ДВС (у которого все стороны и углы равны) и меньший катет АС - это будет половина стороны ВС, так как больший катет АВ является одновременно и высотой и медианой равностороннего треугольника ДВС. Тогда пусть катет АС будет х, тогда гипотенуза ВС будет 2х, а их сумму мы знаем и составляем уравнение:
х+2х=96
3х=96
х=32 см (это длина катета АС)
тогда длина гипотенузы ВС будет 32*2=64 см
alexluu33
Трапеция АВСD равнобедренная, значит ее диагонали равны. АС=BD.
Проведем прямую СР параллельно диагонали BD до пересечения с продолжением основания AD в точке Р. BCPD параллелограмм и DP=BC.
Треугольник АСР прямоугольный и равнобедренный, так как катеты CP и  АС перпендикулярны (АС перпендикулярна BD - дано, а CP параллельна BD по построению). 
Пусть катеты AC и CР равны X. Тогда гипотенуза AP=Х√2 (по Пифагору).
CH - высота треугольника АСР, проведенная из вершины прямого угла и равна произведению катетов, деленному на гипотенузу (свойство).
Итак, CH=AC*CP/AP. CH=14см (дано). Тогда
14=Х^2/(Х√2). Отсюда Х=14√2, а АР=14√2*√2=28см.
Но АР=AD+BC. Тогда площадь трапеции равныS=(AD+BC)*CH/2 или S=28*14/2=196 см^2.
ответ: S=196 см^2.
Вравнобедренной трапеции диагонали взаимно перпендикулярны, высота трапеции равна 14 см. найдите пло

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Периметр осевого сеченияцилиндра равен 28 м., диаметр относитсяк высоте как 4:3. Найдите объёмцилиндра.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Дмитрий74
tat72220525
Lenok33lenok89
artemiusst
zelreiki
mereninka7008
sarycheva659
Алексеевна
FATEEV
MikhailovnaAnastasiya
Avolohova
dpolkovnikov
Беспалова
СветланаВАЛМОС
РубенШафетдинов