=> осевое сечение данного цилиндра (если секущая плоскость совпадает с осью цилиндра) - прямоугольник.
Осевое сечение не может быть квадратом, так как в квадрате все стороны равны, а у нас D : h = 4 : 3, по условию.
Составим уравнение, с которого определим величину высоты и диаметра (а также сторон прямоугольника):
Пусть х - часть диаметра; высоты, 4х - диаметр, 3х - высота.
Так как D = AD = ВС => мы находим ещё и сторону AD
Так как АВ = CD = h => мы находим ещё и сторону АВ.
P прямоугольника = (a + b) * 2 = 28 см, по условию.
(4х + 3х) * 2 = 28
7х * 2 = 28
14х = 28
х = 2
2 см - часть, высоты и диаметра (можно ещё сказать, что это часть AD, AB, CD и ВС)
D = AD = BC = 2 * 4 = 8 см
h = AB = CD = 2 * 3 = 6 см
V = пR²h
R - радиус.
R = D/2 = 8/2 = 4 см
V = п((4)² * 6) = 96п см^3
ответ: 96п см^3
bhg50
29.08.2022
Пусть этот треугольник будет АВС, где АВ и АС это катеты, а ВС - гипотенуза. Так как один угол в прямоугольном треугольнике равен 60, то другой 90-60=30 Значит, что данный треугольник - это половина равностороннего треугольника ДВС (у которого все стороны и углы равны) и меньший катет АС - это будет половина стороны ВС, так как больший катет АВ является одновременно и высотой и медианой равностороннего треугольника ДВС. Тогда пусть катет АС будет х, тогда гипотенуза ВС будет 2х, а их сумму мы знаем и составляем уравнение: х+2х=96 3х=96 х=32 см (это длина катета АС) тогда длина гипотенузы ВС будет 32*2=64 см
alexluu33
29.08.2022
Трапеция АВСD равнобедренная, значит ее диагонали равны. АС=BD. Проведем прямую СР параллельно диагонали BD до пересечения с продолжением основания AD в точке Р. BCPD параллелограмм и DP=BC. Треугольник АСР прямоугольный и равнобедренный, так как катеты CP и АС перпендикулярны (АС перпендикулярна BD - дано, а CP параллельна BD по построению). Пусть катеты AC и CР равны X. Тогда гипотенуза AP=Х√2 (по Пифагору). CH - высота треугольника АСР, проведенная из вершины прямого угла и равна произведению катетов, деленному на гипотенузу (свойство). Итак, CH=AC*CP/AP. CH=14см (дано). Тогда 14=Х^2/(Х√2). Отсюда Х=14√2, а АР=14√2*√2=28см. Но АР=AD+BC. Тогда площадь трапеции равныS=(AD+BC)*CH/2 или S=28*14/2=196 см^2. ответ: S=196 см^2.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Периметр осевого сеченияцилиндра равен 28 м., диаметр относитсяк высоте как 4:3. Найдите объёмцилиндра.
цилиндр.
Р осевого сечения = 28 м
D : h = 4 : 3
Найти:V - ?
Решение:Пусть АВ, ВС, AD, CD - стороны осевого сечения.
АВ = CD = h (или ОО1)
D = AD = BC
=> осевое сечение данного цилиндра (если секущая плоскость совпадает с осью цилиндра) - прямоугольник.
Осевое сечение не может быть квадратом, так как в квадрате все стороны равны, а у нас D : h = 4 : 3, по условию.
Составим уравнение, с которого определим величину высоты и диаметра (а также сторон прямоугольника):
Пусть х - часть диаметра; высоты, 4х - диаметр, 3х - высота.
Так как D = AD = ВС => мы находим ещё и сторону AD
Так как АВ = CD = h => мы находим ещё и сторону АВ.
P прямоугольника = (a + b) * 2 = 28 см, по условию.
(4х + 3х) * 2 = 28
7х * 2 = 28
14х = 28
х = 2
2 см - часть, высоты и диаметра (можно ещё сказать, что это часть AD, AB, CD и ВС)
D = AD = BC = 2 * 4 = 8 см
h = AB = CD = 2 * 3 = 6 см
V = пR²h
R - радиус.
R = D/2 = 8/2 = 4 см
V = п((4)² * 6) = 96п см^3
ответ: 96п см^3