Алексеевна
?>

Впрямоугольном параллелепипеде авсда1в1с1д1 найдите величину двугранного угла между плоскостями авс и ав1с, если ав=6 см, вс=8 см, вв1=12 см

Геометрия

Ответы

Овчинников_Грузман
Для получения плоского угла между заданными плоскостями проведём секущую плоскость через ВВ1 перпендикулярно АС.
На АС получим точку Е. Искомый угол - В1ЕВ.
АС = √(6²+8²) = √(36+64) = √= 10 см.
Треугольники АВЕ и АСВ подобны как имеющие 2 взаимно перпендикулярные стороны. Угол АВЕ равен углу АСВ.
ВЕ = AB*cos ABE = АВ*cos ABC = 6*(8/10) = 48/10 = 24/5.
Искомый угол В1ЕВ (пусть это угол α) находим по его тангенсу.
tg α = В1В/ВЕ = 12/(24/5) = 5/2 = 2,5.
α = arc tg 2,5 =  1,19029 радиан = 68,19859°.
Sinelnikov1650

abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad

тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;

пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y

площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy

выразим через s площади befc   и aefd.

площадь aefd равна сумме площадей aofd   и aeo.

рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd   равна разности площадей acd и ocf:

6xy-3/8*xy=45/8*xy

рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd   равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy

площадь befc равна разности площадей abcd и   aefd:

8xy-27/4*xy=5/4*xy

s(befc): s(aefd)=5/4*xy: 27/4*xy=5: 27

kurlasku

abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad

тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;

пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y

площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy

выразим через s площади befc   и aefd.

площадь aefd равна сумме площадей aofd   и aeo.

рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd   равна разности площадей acd и ocf:

6xy-3/8*xy=45/8*xy

рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd   равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy

площадь befc равна разности площадей abcd и   aefd:

8xy-27/4*xy=5/4*xy

s(befc): s(aefd)=5/4*xy: 27/4*xy=5: 27

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Впрямоугольном параллелепипеде авсда1в1с1д1 найдите величину двугранного угла между плоскостями авс и ав1с, если ав=6 см, вс=8 см, вв1=12 см
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

впвыпвып-Зуйков629
Назаренко1075
gubernatorov00
elena-vlad822828
dakimov
Gradus469
goldglobustour725
Radikovnanikolaeva
aleksagrbec39
nzagrebin363
Anastasiya Yevseeva948
ainetdinovsnab
sergei-pletenev
Оксана759
Владимир