1. т.к. диагонали ромба взаимно перпендикулярны, точкой пересечения делятся пополам, то сторона находится из прямоугольного треугольника, в котором известны два катета - половины диагоналей, а сторона является гипотенузой этого треугольника. По Пифагору
эта сторона равна √((4/2)²+(4√3/2)²)=√(4+12)=√16=4
2. Получаем, что сторона равна одной из диагоналей ромба, а стороны равны у ромба, значит, эта диагональ делит ромб на два равносторонних треугольника. В них все углы по 60°. А т.к. углы, прилежащие к одной стороне ромба в сумме составляют 180°, то тупой угол ромба равен 180°-60°=120°
ответ 120°
Поделитесь своими знаниями, ответьте на вопрос:
Найдите координаты середины отрезка АВ, если А(1;3;2) и В(0;2;4)
X =(Xa+Xb)/2=1/2
Y = ((Ya+Yb)/2=2,5
Z = ((Za+Zb)/2=3
Объяснение: