1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение:
Предположим, это треугольник ABC, в котором угол А тупой, а из угла В опущена высота на основание АС. Если продлить основание АС, то высота пересечется с продленным основанием в точке, которую назовем Н. Тогда по условию угол НВА=14 градусов, а угол НВС=38 градусов.
Угол ВНС=90 градусов.
АВС=НВС-НВА, следовательно, АВС=38-14=24 градуса.
В прямоугольном треугольнике НВС сумма углов составляет 180 градусов. Следовательно, ВСА=ВСН=180-38-90=52 градуса
В треугольнике АВС сумма углов равна 180 градусов, следовательно, ВАС= 180-52-24=104 градуса
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Бічне ребро прямої сотирикутної призми дорівнює 6 см знайдіть площу повної поверхні призми якщо її основа прямокутник одна із сторін якого дорівнює 12 см а діагональ 13 см
ответ: 324см²
Объяснение: диагональ основания АС делит его на 2 равных прямоугольных треугольника АВС и АСД, в которых стороны основания являются катетами а диагональ АС - гипотенуза. Найдём катет СД по теореме Пифагора:
СД²=АВ²=√(АС²-АД²)=√(13²-12²)=
=√(169-144)=√25=5см
Теперь найдём площади боковых граней, зная стороны и высоту параллелепипеда:
Sabcd=Sa1b1c1d1=5×12=60см². Таких граней 2, поэтому площадь двух таких граней=60×2=120см²
В параллелепипеде 6 граней и одинаковых по 2, поэтому будем умножать каждую найденную площадь грани на 2
Saa1b1b=Sdd1c1c=5×6=30см²; 2S=30×2=60см²
Saa1d1d=Sbb1c1c=12×6=72см²
2S=72×2=144см²
Теперь найдём полную площадь поверхности параллелепипеда, зная площиди всех его граней:
Sпол=120+60+144=324см²