ответ: площадь равна пи (или просто п)
Объяснение:
1) построим треугольник, нижний катет 3, боковой 4. Впишем окружность, проведем радиусы к катетам. Соединим вершину катета в 3 с центром окружности. Получатся два подобных треугольника: их катеты равны по радиусу, другие - неизвестны (будут равны), обозначим их за Х.
2) в пересчете получим, что нижний катет основного треугольника делится радиусом на 3-Х и Х, гипотенуза на Х и 5-Х (гипотенуза равна 5 - египетский треугольник), боковой катет - на 5-Х и 4-5+Х
3) составим уравнение Х-1=3-Х, откуда Х=2. подставим, получим, что у прямоугольника, образованного двумя радиусами к катетам основного треугольника и частями основных катетов, составляющих прямой угол, две соседние стороны образуют прямой угол + равны , значит это квадрат, значит радиус равен 1( стороны этого маленького треугольника равны 1)
4) площадь окружности п*(r^2)=п*1=п
Поделитесь своими знаниями, ответьте на вопрос:
Найди объём правильной четырёхугольной пирамиды, сторона основания которой равна 10, а боковое ребро равно √59.
Объяснение: в основании правильной четырёхугольной пирамиды лежит квадрат. Его площадь S=a², где а - его сторона. Sосн=10²=100(ед²)
Диагонали квадрата делят его на 2 равных равнобедренных прямоугольных треугольников, и также сами делятся пополам, поэтому АО=СО=ВО=ДО. Рассмотрим полученный ∆АВС, В нём АВ и ВС - катеты, а АМ- гипотенуза. В равнобедренном прямоугольном треугольнике гипотенуза в √2 больше катета, поэтому АС=10√2(ед)
Так как диагонали квадрата делятся пополам, то АО=СО=10√2/2=5√2(ед)
Рассмотрим ∆АОS. В нём АО и SO- катеты, а АS- гипотенуза. Найдём высоту пирамиды SO по теореме Пифагора:
SO²=АS²-АО²=(√59)²-(5√2)²=59-25×2=
=59-50=9; SO=√9=3(ед)
Теперь найдём объем пирамиды зная площадь основания и её высоту по формуле: V=⅓×Sосн×h=⅓×100×3=100(ед³)