Нана_Елена
?>

Стереометрия, Дан куб ABCDA1B1C1D1 с основанием ABCD и боковыми ребрами AA1, BB1, CC1, DD1. Найдите расстояние между прямой, проходящей через середины ребев AB и AA1, и прямой, проходящей через середины ребер BB1 и B1C1, если ребро куба равно 1.

Геометрия

Ответы

Марина_Мария

Дан куб ABCDA1B1C1D1 с основанием ABCD и боковыми ребрами AA1, BB1, CC1, DD1. Найдите расстояние между прямой, проходящей через середины ребев AB и AA1, и прямой, проходящей через середины ребер BB1 и B1C1, если ребро куба равно 1

Объяснение:

Введем прямоугольную систему координат. Тогда координаты точек

К(0; 0,5 ;0)  ,М(0;-0,5 ;0,5) . Вектор КМ(0;-0,5;0,5).

Н(0; 1 ;0,5)  ,Р(-0,5;1 ;1) . Вектор НР(0;-0,5;0,5).

cos(КМ;НР)=\frac{x_{1} *x_{2}+y_{1} *y_{2}+z_{1} *z_{2} }{|KM|*|HP|} =\frac{0+0-\frac{1}{4} }{\frac{\sqrt{2} }{2}*\frac{\sqrt{2} }{2} } =  -\frac{1}{4} : \frac{2}{4} =-\frac{1}{2}

Угол между векторами 120° . Угол между прямыми КМ и НР ( на которых лежат данные вектора) будет меньший угол 180°-120°=60°


Стереометрия, Дан куб ABCDA1B1C1D1 с основанием ABCD и боковыми ребрами AA1, BB1, CC1, DD1. Найдите
asskokov
H(высота) конуса=100см.=1м. угол при вершине=120°. Половина осевого сечения конуса дает прямоугольный треугольник, где катет a=h=100 см., угол при вершине=60°(120°/2). Найдем гипотенузу рассматриваемого прямоугольного треугольника: с = a/cos60°=100/0,5=50см.=0,5м.
Сечение конуса из двух образующих есть треугольник, 2-е стороны которого равны и дан угол между ними=60°. Образующие конуса равны: с=с1=50 см.=0,5м. Треугольник равнобедренный. Значит углы при основании должны быть равны между собой. (В любом треугольнике сумма углов =180°) 180°- 60°=90°, 90°/2=45°
S площадь полученного сечения конуса(равнобедренного треугольника)= 1/2 * a²(у нас a²=с*с1) * sinα= 1/2 * 0,5² * sin60°=0,5 * 0,5² *0,87=0,10875м²=10,88см²
volkovaekaterina303
По уравнениям боковых сторон 3x+y=0 и -x+3y=0 видно, что они проходят  через начало координат - это одна из вершин треугольника: О(0;0).
Основание равнобедренного треугольника перпендикулярно его высоте (она же и биссектриса угла при вершине).
Находим уравнения биссектрис угла при вершине О:
\frac{A_1x+B_1y+C_1}{ \sqrt{A_1^2+B_1^2} } =+- \frac{A_2x+B_2y+C_2}{ \sqrt{A_2^2+B_2^2} }
1) (3х+у)/√10 = (-х+3у)/√10
    3х+у = -х+3у
    4х = 2у
     у = 2х  не подходит (проходит выше сторон треугольника).

2) (3х+у)/√10 = -(-х+3у)/√10
    3х+у = -(-х+3у)
    2х = -4у
     у = (-1/2)х.
    Уравнение перпендикулярной прямой у = 1/(-к)+в
    В нашем случае уравнение основания (назовём его АВ) будет таким:
    у = 1(1/2)х+в = 2х+в.
    Подставим координаты известной точки на основании (5;0):
    0 = 2*5+в  отсюда в = -10.
    Уравнение АВ: у = 2х-10  или 2х-у-10 = 0.
    Координаты вершин А и В находим как как точки пересечения боковых сторон с основанием.
\left \{ {3x+y=0} \atop {2x-y-10=0}} \right.
Сложив уравнения, получаем 5х-10 = 0, отсюда х = 10/5 = 2.
у = -3х = -3*2 = -6. Это точка А(2; -6).
\left \{ {{-x+3y=0} \atop {2x-y-10=0}} \right.
Умножим первое уравнение на 2 и сложим:
5у = 10,  у = 10/5 = 2,  х = 3у = 3*2 = 6.
Это точка В(6; 2).

ответ: вершины треугольника  О(0;0), А(2;-6), В(6;2).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Стереометрия, Дан куб ABCDA1B1C1D1 с основанием ABCD и боковыми ребрами AA1, BB1, CC1, DD1. Найдите расстояние между прямой, проходящей через середины ребев AB и AA1, и прямой, проходящей через середины ребер BB1 и B1C1, если ребро куба равно 1.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Dmitrii1763
missimeri
tofilev
Некрасова-И
bezpalova2013
alakhverdov138
Мария591
Shelchkowa453
Татьяна_Полулях
Анатольевна824
Lyalikova
Staroverovanatasa494
Ye.Vadim
Ivanovna
Olga Arutyunyan