1. Трапеция ABCD, AD II BC, AB = CD; AC перпендикулярно BD. Ясно также, что AC = BD;
Если провести CE II BD, Е лежит на продолжении AD, то BCDE - параллелограмм, и треугольник ACE имеет ту же площадь, что и трапеция ABCD, поскольку AE = AD + DE = AD + BC, и площади ACE и ABCD равны (AD + BC)*h/2, где h - расстояние от С до AD.
Далее, треугольник АСЕ прямоугольный равнобедренный, поэтому его высота к АЕ равна половине АЕ = 6 + 10 = 16, то есть h = 8, и площадь равна 16*8/2 = 64.
2. В равнобедренной описанной трапеции сумма боковых сторон равна сумме оснований, что означает, что боковая сторона равна средней линии. Поскольку угол при основании 30 градусов, то высота трапеции равна половине боковой стороны.
Поэтому, если боковая сторона (она же средняя линяя) равна а, то
a*(a/2) = 312,5;
a^2 = 625;
a = 25
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значение выражения: tg⋅ctg2+cos3 при =60∘
-Следует сказать, что прямая, лежащая в плоскости, делит эту плоскость на две полуплоскости. Прямая в этом случае называется границей полуплоскостей. Любые две точки одной полуплоскости лежат по одну сторону от прямой, а две точки разных полуплоскостей лежат по разные стороны от граничной прямой.
-Два луча называются сонаправленными, если либо содержащие их прямые параллельны и лучи лежат в одной полуплоскости относительно прямой, соединяющей их начала, либо один из лучей содержит другой.
-Два луча ОА и О1А1, лежащие на одной прямой, называются сонаправленными, если они совпадают или один из них содержит другой.
-Углом между двумя пересекающимися прямыми называется величина наименьшего плоского угла при пересечении данных прямых. ... Если две прямые параллельны, то угол между ними принимается равным нулю.
-Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым. Определение 3.2. Две прямые в пространстве называются перпендикулярными, если они образуют прямой угол.