Можно применить другой решения, но с достройкой треугольника до параллелограмма.
Пусть стороны AС и BC треугольника ABC равны соответственно 15 и 13, а его медиана СО равна 7. На продолжении медианы СО за точку О отложим отрезок ОD, равный СО. Из равенства треугольников AСО и ВDО (по двум сторонам и углу между ними) следует равенство площадей треугольников ABC и BCD. В треугольнике BCD известно, что : BC = 13, СD = 2СО = 14, ВD = AС = 15.
Полупериметр BCD равен (14+13+15)/2 = 21.
По формуле Герона S(ABC) = S(CBD) = √(21*7*8*6) = 7*3*4 = 84 кв.ед.
такого треугольника не существует
или 60 см^2.
Объяснение:
Треугольника с заданными сторонами не существует.
13 см > 10см + 13мм, не выполнено неравенство для сторон треугольника.
Если в условии опечатка, длины стороны треугольника 13 см, 13 см, 10 см, то площадь может быть найдена по формуле Герона:
S = √p•(p-a)•(p-b)•(p-c).
p = (10+13+13):2 = 18 (см),
S = √18•(18-13)•(18-13)•(18-10) = √(18•5^2•8) = √(9•5^2•16) = 3•5•4 = 60 (см^2)
Ещё одним может быть нахождение по формуле
S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
(S = 1/2•10•12 = 60 (см^2) ).
Поделитесь своими знаниями, ответьте на вопрос:
Две стороны треугольника равны 15 и 13, а медиана, опущенная к третьейстороне, равна 7. Найдите площадьданного треугольника.
S(AВС)=~84.2ед.^2
Найдите площадь треугольника.