Для любого выпуклого четырехугольника отрезки, соединяющие середины смежных сторон этого четырехугольника, образуют параллелограмм. Для этого проведем одну из диагоналей: она разбивает четырехугольник на два треугольника, средние линии которых равны и параллельны, (как средние линии параллельные основанию, равные половине диагонали), и эти две средние линии являются противоположными сторонами искомого параллелограмма. Для второй диагонали - проделываем то же самое. В итоге, в равнобедренной трапеции диагонали равны, а значит равны и все стороны искомого параллелограмма, который поэтому и является ромбом.
faberlic0168
23.06.2022
1. По координатам (у тебя записаны сначала Х, потом У) нужно найти три точки в системе координат и соединить их, мысленно выделить два отрезка BA и BC (векторы без направления получились) и угол между ними. 2. Вспомни теорему Пифагора и опускай перпендикуляры вниз от каждого вектора-отрезка, чтобы потом по этой теореме можно было посчитать их численное значение. Т.е. просто дострой до прямоугольного треугольника каждый вектор другими отрезками (я их карандашом выделил). И посчитай значение каждого вс карандашом) отрезка по клеточкам... 3. Теперь надо по теореме Пифагора считать численное значение каждого основного из трёх векторов-отрезков (которые ручкой), которые будут являться гипотенузами в соответствующих треугольниках. 4. В основном большом треугольнике (ручкой) известны все стороны (основные векторы-отрезки) - по теореме косинусов, используя все стороны этого треугольника, можно найти один из его углов. Пусть это будет угол искомый - между BA и BC.
Посчитав, получил примерно 37,94°. Очень большие числа были, раза 4 проверил всё. И даже транспортиром вручную измерил в конце угол: около 38°. Так что точно правильно. Если что-то неясно-непонятно, пиши, я всегда на связи.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Прямая а проходит через точку А и не проходит через точку В
Для этого проведем одну из диагоналей: она разбивает четырехугольник на два треугольника, средние линии которых равны и параллельны, (как средние линии параллельные основанию, равные половине диагонали), и эти две средние линии являются противоположными сторонами искомого параллелограмма. Для второй диагонали - проделываем то же самое. В итоге, в равнобедренной трапеции диагонали равны, а значит равны и все стороны искомого параллелограмма, который поэтому и является ромбом.