ответ: 30°.
Объяснение:
ΔОСВ: ОС=ОВ как радиусы одной окружности ⇒
ΔОСВ - равнобедренный, значит ∠ОВС=∠ОСВ=60° по свойству углов при основании равнобедренного треугольника.
Из теоремы о сумме углов треугольника:
∠СОВ=180°-(∠ОВС+∠ОСВ)=180°-(60°+60°)=60°.
ΔАОВ: АО=ВО как радиусы одной окружности ⇒
ΔАОВ - равнобедренный.
ОD- медиана ΔАОВ, т.к. АD=DВ по условию ⇒ ОD - биссектриса ⇒
∠ АОD=∠ВОD=60°, ∠ АОВ=∠АОD+∠ВОD=60°+60°=120°.
∠ ОАВ=∠ ОВА по свойству углов при основании равнобедренного треугольника.
Из теоремы о сумме углов треугольника:
∠ ОАВ=(180°-120°):2=60°:2=30°.
ответ: 30°.
Объяснение:
ΔОСВ: ОС=ОВ как радиусы одной окружности ⇒
ΔОСВ - равнобедренный, значит ∠ОВС=∠ОСВ=60° по свойству углов при основании равнобедренного треугольника.
Из теоремы о сумме углов треугольника:
∠СОВ=180°-(∠ОВС+∠ОСВ)=180°-(60°+60°)=60°.
ΔАОВ: АО=ВО как радиусы одной окружности ⇒
ΔАОВ - равнобедренный.
ОD- медиана ΔАОВ, т.к. АD=DВ по условию ⇒ ОD - биссектриса ⇒
∠ АОD=∠ВОD=60°, ∠ АОВ=∠АОD+∠ВОD=60°+60°=120°.
∠ ОАВ=∠ ОВА по свойству углов при основании равнобедренного треугольника.
Из теоремы о сумме углов треугольника:
∠ ОАВ=(180°-120°):2=60°:2=30°.
Поделитесь своими знаниями, ответьте на вопрос:
Підлогу що має форму прямокутника розмірами 3, 5м і 4м необзідно покрити плиткою. Скільки плитое знадобиться якщо плитка має форму квадрата із стороною 40 см?
88штук.
Объяснение:
Формула знаходження площі прямокутника
S=a*b,де а,b сторони прямокутника.
Із цієї формули знайдемо площу підлоги:
3,5*4=14м² площа підлоги.
40см=0,4м.
Із формули S=a*b знайдемо площу плитки:
0,4*0,4=0,16 м² площа плитки.
14:0,16=87,5 кількість плиток, які необхідні для підлоги
Округліти до цілого в більшу сторону.
87,5≈88
Відповідь:88шт плиток..