А)Отрезки ОА и ОВ называются радиусами. Их длина равна 3 см.
Б)АВ является радиусом и его длина равна 2R=2×3=6 см.
2.
Если расстояние между центрами двух окружностей больше суммы их радиусов, то окружности не имеют общих точек.
R(Центр K)+R(Центр М)<KM.
Запишем 1 см и 5 мм как 1,5 см.
2+1,5<5; 3,5<5.
ответ: Окружности не имеют общих точек.
3. Радиус равен половине Диаметра.
Запишем 3 см и 8 мм как 3,8 см.
R=½D=½×3,8=1,9 см или же 1 см 9 мм.
4. Диаметр окружности - отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка. Диаметр равен двум радиусам.
5. Круг - часть плоскости, лежащая внутри окружности.
perova-s200
01.01.2021
По определению хорда МР и диаметр КЕ - отрезки, соединяющие точки окружности. Следовательно, они могут образовать искомый угол только пересекаясь внутри окружности, имея одну общую точку, например, Н. КЕ - диаметр, значит дуга КРЕ=180°. Дуга КРЕ - это сумма дуг КР и РЕ, причем дуга РЕ=0,8*КР (дано). Тогда КР+РЕ=1,8*КР=180°. Отсюда КР=100°, а РЕ=80°. Вписанный угол КЕМ равен половине градусной меры дуги МК, на которую он опирается, то есть <KЕM=13°. Вписанный угол ЕМР, опирающийся на дугу РЕ, равен 40°. Тогда в треугольнике НМЕ (Н - точка пересечения хорды и диаметра), угол МНЕ (искомый угол) равен 180°-13°-40°=127°. ответ: 127°
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Постройте график функции y = f(x): а) у = 1 + cosx;6) y = sinx – 3;в) у = tgx - 1;г) у = -2 + ctgx.
Надеюсь, что все чертежи сможете выполнить сами.
1.
А)Отрезки ОА и ОВ называются радиусами. Их длина равна 3 см.
Б)АВ является радиусом и его длина равна 2R=2×3=6 см.
2.
Если расстояние между центрами двух окружностей больше суммы их радиусов, то окружности не имеют общих точек.
R(Центр K)+R(Центр М)<KM.
Запишем 1 см и 5 мм как 1,5 см.
2+1,5<5; 3,5<5.
ответ: Окружности не имеют общих точек.
3. Радиус равен половине Диаметра.
Запишем 3 см и 8 мм как 3,8 см.
R=½D=½×3,8=1,9 см или же 1 см 9 мм.
4. Диаметр окружности - отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка. Диаметр равен двум радиусам.
5. Круг - часть плоскости, лежащая внутри окружности.