Когда b2 + c2 - a2 = 0, угол α будет прямым (когда угол α является прямым, значит, теорема косинусов переходит в теорему Пифагора);
Когда b2 + c2 - a2 < 0, угол α будет тупым.
zakaz6354
29.09.2020
Смотрите рисунок к задаче, который приложен к ответу. На рисунке есть все построения, описанные в задаче, а именно: с прямым углом , EF — биссектриса , , FG — искомый отрезок. ========== Решение: Докажем, что . 1) Так как — биссектриса, то (биссектриса делит на два равные угла). 2) (это следует из условия: так как прямоугольный, то и ; так как — расстояние от до , то ). 3) Так как и , то и третий угол первого треугольника равен третьему углу второго треугольника: . Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:
Отсюда:
Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит .
3) Сторона является для обоих треугольников общей. Собранных сведений достаточно, чтобы заключить, что (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам ( — сторона, а — два прилежащих угла)). Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне соответствует , тогда:
ответ: 13. ========= ответ можно проверить, геометрически (линейкой) измерив искомый отрезок . Смотрите второй рисунок.
Объяснение:
Для плоского треугольника, у которого стороны a, b, c и угол α, который противолежит стороне a, справедливо соотношение:
a2 = b2 + c2 – 2bc cosα.
Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Следствие из теоремы косинусов.
Теорема косинусов используется для определения cos угла треугольника:
Теорема косинусов. Доказательство теоремы косинусов.
Если конкретно:
Когда b2 + c2 - a2 > 0, угол α будет острым;
Когда b2 + c2 - a2 = 0, угол α будет прямым (когда угол α является прямым, значит, теорема косинусов переходит в теорему Пифагора);
Когда b2 + c2 - a2 < 0, угол α будет тупым.