Александрович_Викторовна
?>

очень ГЕОМЕТРИЯ сформулировать свойства равенство геометрических фигур Приведите примеры изобразите математическую модель ​

Геометрия

Ответы

olesyadeinega41

Коэффициент подобия называется отношение любых соответственных линейных размеров первой фигуры к линейным размерам второй фигуры, находящимся против одинаковых углов.

А так как площадь треугольника равна произведение сторон АВ, ВС, и синуса угла между ними, а А1В1 = к * АВ, В1С1 = к * ВС, к коэффициент подобия,то :

S A1B1C1 = A1B1 * B1C1 * sin <(A1B1,B1C1) = 81 (cм2) = к* АВ * к * ВС * sin<(AB,BC) = k^2*S ABC

S ABC = AB * BC * sin < (AB,BC)=25(cм2).

к^2 = S A1B1C1/ S ABC = 81/25, k = 9/5 = 1,8

^ - степень

/ - деление

Zebra198383

Доказательство

1) Возьмем произвольную точку M на биссектрисе угла BAC, проведем перпендикуляр MK и ML к прямым AB и AC

Рассмотрим прямоугольные треугольники AMK и AML. Они равны по гипотенузе и острому углу. (AM - общая гипотенуза, ∠1∠2 по условию\). Следовательно, MKML

2) Пусть точка M лежит внутри угла BAC и равноудалена от его сторон AB и AC. Докажем, что луч AM - биссектриса угла BAC

Проведем перпендикуляры MK и ML к прямым AB и AC. Прямоугольные треугольники AMK и AML - равны по гипотенузе и катету (AM - общая гипотенуза, MKML по условию ). Следовательно, ∠1∠2. Но это и значит, что луч AM - биссектриса угла BAC. Теорема доказана

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

очень ГЕОМЕТРИЯ сформулировать свойства равенство геометрических фигур Приведите примеры изобразите математическую модель ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

samoilovcoc
maxchuev
Vip2002www86
Гаврилаш
Lapushkina
Sergei Gaishun
Semenova1719
Иванович
expozition
verav75
Александр Джабраиловна1967
apioslk4533
Zeegofer
tefdst
Иван1764