Пусть M и N, это середины оснований BC и AD равнобедренной трапеции ABCD с перпендикулярными диагоналями AC и BD, K и L — середины боковых сторон AB и CD. Тогда KM || AC || LN, ML || BD || KN, поэтому четырехугольник KMLN — прямоугольник. Значит, KL = MN, но KL — средняя линия трапеции, а MN — высота. Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме. Доказательство Пусть ABCD – данная трапеция. Проведем через вершину B и середину N боковой стороны CD прямую, пересекающую прямую AD в точке F . Треугольники BCN и FDN равны по теореме 4.2, так как CN = ND, BCN = NDF как внутренние накрест лежащие при параллельных прямых ( BC ) и ( AD ) и секущей ( CD ). CNB = DNF как вертикальные. Из равенства треугольников следует равенство сторон: BN = NF, BC = DF . Средняя линия трапеции MN является средней линией треугольника ABF и по теореме 4.12 ( MN ) || ( AD ) || ( BC ) и Теорема доказана.
tarasowamash4
29.03.2021
Проведем 2 высоты ВН1 и СН2 АН1 + DН2 = 15-7 = 8 Треугольник АВН1 с углом при основании 60°, а треугольник DСН2 с углом 30°. tg 60° = BH1/АН1 = 1/√3 AH1 = BH1/√3 tg 30° = CH2/DH2 = √3/3 DH2 = 3*CH2/√3
Пусть M и N, это середины оснований BC и AD равнобедренной трапеции ABCD с перпендикулярными диагоналями AC и BD, K и L — середины боковых сторон AB и CD. Тогда
KM || AC || LN, ML || BD || KN,
поэтому четырехугольник KMLN — прямоугольник. Значит, KL = MN, но KL — средняя линия трапеции, а MN — высота.
Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме.
Доказательство
Пусть ABCD – данная трапеция. Проведем через вершину B и середину N боковой стороны CD прямую, пересекающую прямую AD в точке F .
Треугольники BCN и FDN равны по теореме 4.2, так как CN = ND, BCN = NDF как внутренние накрест лежащие при параллельных прямых ( BC ) и ( AD ) и секущей ( CD ). CNB = DNF как вертикальные. Из равенства треугольников следует равенство сторон: BN = NF, BC = DF . Средняя линия трапеции MN является средней линией треугольника ABF и по теореме 4.12 ( MN ) || ( AD ) || ( BC ) и Теорема доказана.