rayman777
?>

А5. Найдите синус угла B треугольника ABC, если известно, что:а) стороны ВС и АС равны 4 и 5 соответственно, а sin углаB= 3/8б) стороны АВ и АС равны 20 и 30 соответственно, а sin углаC=1/6

Геометрия

Ответы

idalbaev
Доказательство.

Пусть b – данная прямая, а точка A принадлежит этой прямой. Возьмем некоторый луч b1 на прямой b с начальной точкой в A. Отложим от луча b1 угол (a1b1), равный 90°. По определению прямая содержащая луч a1 будет перпендикулярная прямой b.
Допустим, существует другая прямая перпендикулярная прямой b и проходящая через точку A. Возьмем на этой прямой луч с1, исходящий из точки A и лежащий в той же полуплоскости, что и луч a1. Тогда ∠ (a1b1) = ∠ (c1b1) = 90 º. Но согласно аксиоме 8, в данную полуплоскость можно отложить только один угол, равный 90 º. Следовательно, нельзя провести другую прямую перпендикулярную прямой b через точку A в заданную полуплоскость. Теорема доказана.
ortopediya
Так как вписанная и описанная окружности существуют, то данная трапеция равнобедренной.

По свойства описанного четырехугольника, суммы его противоположных сторон равны:
AB+CD=AD+BC
Две стороны AD и ВС известны, две другие АВ и СD равны между собой, тогда:
AB=CD= \frac{4+16}{2} =10

Проведем высоты BH и СК, равные диаметру вписанной окружности. Тогда отрезок НК будет равен отрезку ВС, а оставшаяся длина отрезка АD распределится поровну между отрезками АН и КD. Получаем:
HK=4; AH=KD= \frac{16-4}{2} =6

Рассмотрим треугольник АВН. По теореме Пифагора:
BH= \sqrt{AB^2-AH^2} 
\\\
BH= \sqrt{10^2-6^2} =8
Так как найден диаметр вписанной окружности, то можно найти и радиус:
r= \frac{BH}{2} = \frac{8}{2} =4

Проведем диагональ трапеции AC. По теореме Пифагора для треугольника АСК получим:
AC= \sqrt{AK^2+CK^2} = \sqrt{(AH+HK)^2+CK^2} 
\\\
AC= \sqrt{(6+4)^2+8^2} = \sqrt{164} =2 \sqrt{41}

Рассмотрим треугольник АСD. Окружности, описанные около заданной трапеции и около треугольника ACD совпадают. Тогда найдем радиус описанной окружности треугольника ACD через теорему синусов: отношение стороны треугольника к синусу противолежащего угла есть удвоенный радиус описанной окружности. Удобно записать соотношение в следующем виде:
2R= \frac{CD}{\sin CAD}
Неизвестный синус найдем из прямоугольного треугольника АКС:
\sin CAD=\sin CAD= \frac{CK}{AC}
Выражаем R и подставляем выражение для синуса:
R= \frac{CD}{2\sin CAD} =\frac{CD\cdot AC}{2 CK} 
\\\
R= \frac{CD}{2\sin CAD} =\frac{10\cdot 2 \sqrt{41} }{2 \cdot 8} =\frac{5 \sqrt{41} }{4}

ответ: радиус вписанной окружности 4; радиус описанной окружности \frac{5 \sqrt{41} }{4}

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

А5. Найдите синус угла B треугольника ABC, если известно, что:а) стороны ВС и АС равны 4 и 5 соответственно, а sin углаB= 3/8б) стороны АВ и АС равны 20 и 30 соответственно, а sin углаC=1/6
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Galliardt Sergeevna1284
eurostom
aaltuxova16
Abdulganieva1367
vallod
miss1380
Vasilii1891
werda84
minaskorolev8
Less2014
shajmasha
Tkachenko1050
cheberyako2013
ustinovalubov6666
katar050419735