?>
Плоскость, параллельная стороне AC треугольника ABC, пересекается со сторонами AB и BC в точках A1, C1 соответственно. Известно, что AC = 6, AC1 = 2, AA1 = 5 и CC1 = 5. Определи длину стороны AB.
Ответы
Длина высоты будет равна 4,8 единиц
Это решается очень просто.
Прямоугольные треугольники обладают таким свойством, что высота, опущенная на гипотенузу из прямого угла, делит треугольник на 2 ему подобных.
Из подобия одного треугольника к исходному и теоремы Пифагора - вытекает решение.
Синусы и косинусыТолько задачка, скорее всего, из такого класса, что синусы еще не проходили. Поэтому подобие - наиболее приемлемое должно быть. иначе учитель запалит решение.
Можно из подобия треугольников, можно изходить из косинуса/синуса одного из углов, но получается пропорция:
h/a=b/c, где a,b -катеты, с-гипотенуза, h-высота
h=ab/c=6*8/SQRT(6^2+8^2)=48/10=4.8